
 

Intensity-Based Axial Localization at the Quantum Limit
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We derive fundamental precision bounds for single-point axial localization. For Gaussian beams, this
ultimate limit can be achieved with a single intensity scan, provided the camera is placed at one of two
optimal transverse detection planes. Hence, for axial localization there is no need of more complicated
detection schemes. The theory is verified with an experimental demonstration of axial resolution 3 orders of
magnitude below the classical depth of focus.
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Introduction.—The maximum spatial resolution attain-
able in classical microscopy is usually established in terms
of the Abbe-Rayleigh criterion [1,2]. However, it is well
known that this criterion is based on heuristic notions and is
an inadequate performance measure for current quantitative
imaging [3,4].
Indeed, several modern techniques, gathered under the

broad denomination of superresolution microscopy [5–9],
are capable of achieving a striking increase in resolution by
more than one order of magnitude in comparison with the
length scale set by the Abbe-Rayleigh criterion. An
important class of these techniques (which includes, among
others, stimulated-emission-depletion microscopy [10],
photoactivated-localization microscopy [11], point spread
function (PSF) engineering [12–16], and multiplane detec-
tion [17–19]) relies on a very accurate localization of point
sources.
For three-dimensional imaging, extracting the emitter

axial position is an enduring challenge that has been
extensively investigated [20]. Yet, finding the optimal
depth precision attainable by any such microscope engi-
neering approach has been only recently tackled [21,22].
The basic idea is to use the quantum Fisher information
(QFI) and the associated Cramér-Rao bound (QCRB) to get
a measurement-independent limit [23], much in the same
vein as Tsang and co-workers did to quantify transverse
two-point resolution [24–27] (see also Ref. [28]).
In this Letter, we address this fundamental question from

a different perspective. By identifying the unitary trans-
formation that embodies the action of the system and its
corresponding generator, we get in a very transparent way
the ensuing QCRB. More important, we do find the optimal
measurement reaching such a limit.
We focus here on direct imaging, for this is the simplest

method available in the laboratory. Of course, one could
rightly argue that in this way all the phase information is
wasted. Surprisingly, we demonstrate that direct detection

can saturate the quantum limits with a single intensity scan,
as long as the camera is placed in one optimal transverse
detection plane. This might be of utmost importance for any
application demanding extreme stringent localization, as it
only requires very simple and feasible equipment.
Theoretical model.—To simplify the details as much as

possible, we take the waist of a focused beam as our object.
The task is to estimate the distance from this object to a
detection plane. In the following, we shall use the Dirac
notation to represent the field, as it allows us to extend the
theory to any type of light source.
If the beam in the object plane is represented by the pure

state jΨð0Þi, the axial displacement can be described by a
unitary operation jΨðzÞi ¼ eiGzjΨð0Þi, the Hermitian oper-
ator G being the corresponding generator. To identify the
action of G in a more precise way, it is convenient
to use the transverse-position representation Ψðx; y; zÞ ¼
hx; yjΨðzÞi. Given our unitary parametrization, it holds

∂zΨðx; y; zÞ ¼ iGΨðx; y; zÞ; ð1Þ

which is consistent with the paraxial wave equation
2ik∂zΨðx; y; zÞ ¼ ∇2

TΨðx; y; zÞ if G ↦ ð1=2kÞ∇2
T , where

k is the wave number and ∇2
T ¼ ∂xx þ ∂yy is the transverse

Laplacian.
For a more tractable analysis and experiment, here we

assume a normalized Gaussian beam

Ψðr;zÞ ¼ 2

wðzÞe
−fr2=½w2ðzÞ�g exp

�
−i
�
kzþ kr2

2RðzÞ−ϕðzÞ
��

;

ð2Þ

although the results are largely independent of this choice.
Notice that, given the cylindrical symmetry, the beam
depends exclusively on the radial coordinate r. The field
distribution inEq. (2) is determined by the beamwaistw0 and
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the Rayleigh range zR through w2ðzÞ ¼ w2
0½1þ ðz=zRÞ2�,

RðzÞ¼z½1þðzR=zÞ2�, ϕðzÞ¼arctanðz=zRÞ, and zR¼πw2
0=λ.

The detection plane is placed at z and therein we perform
a measurement that we do not need to specify beforehand.
To quantify the information about z available in the
measured signal we use the QFI, which, for pure states,
as it is our case, is given byQðzÞ ¼ 4 VarðGÞ, where Var is
the variance computed in the initial state. Given the explicit
form of G in the transverse representation, a direct
calculation shows that for the Gaussian beam one has

QðzÞ ¼ 1

z2R
; ð3Þ

which turns out to be constant. The QCRB [29,30] ensures
then that the variance of any unbiased estimator ẑ of the
displacement z is bounded by the reciprocal of the QFI; viz,
VarðẑÞ ≥ z2R. As a consequence, the lower bound on axial-
measurement errors (per single detection) is precisely the
Rayleigh range. This agrees with the result recently found
in Ref. [31], which discusses the ultimate limits for two-
point axial resolution.
Direct detection.—In general, the QFI is distributed

between the phase and intensity variations of the measured
beam. One thus would naively conclude that intensity
detection, discarding all phase information, cannot saturate
the quantum limit (3). We will show that, contrary to this
belief, this is not the case when the detector is appropriately
placed.
We model the light detection as a random process and,

consequently, we interpret the normalized beam intensity
pðrjzÞ ¼ jΨðr; zÞj2 as the probability density of a single
detection event at r conditional on the value of z. We
assume that detection is limited by shot noise, which obeys
a Poisson distribution [32]. This simplified approach
ignores nonclassical effects, as bunching or entanglement,
but is nonetheless relevant to practical microscopy. In
addition, we ignore finite spatial extent and nonzero pixel
size. Under these hypothesis, the classical Fisher informa-
tion about z per single detection is

F ðzÞ ¼ 2π

Z
∞

0

r
½∂zpðrjzÞ�2
pðrjzÞ dr; ð4Þ

and the associated Cramer-Rao bound quantifies the axial
localization error for direct detection. For a Gaussian beam,
pðrjzÞ ¼ ½πw2ðzÞ=2�−1 exp½−2r2=w2ðzÞ�, so that

F ðzÞ ¼
�∂zw2ðzÞ
w2ðzÞ

�
2

¼ 4

R2ðzÞ ¼
4

z2½1þ ðzR=zÞ2�2
: ð5Þ

Optimal detector positions are at the planes of maximal
wave front curvature: zopt ¼ �zR, whereby the quantum
limit is saturated; i.e., F opt ¼ 1=z2R. In these planes, all the
information about the axial waist location is conveyed by

the intensity and can be extracted with conventional
imaging, thus avoiding more complicated and less robust
techniques.
Potential applications of this effect benefit from using a

relay optical system for reimaging the object and obtaining
a more convenient detector position. Figure 1 sketches the
simplest case of a thin lens placed a distance z from the
waist. Primed symbols will distinguish henceforth para-
meters in the image space.
Since an ideal imaging system applies a unitary trans-

formation, the QFI does not change from the object
space to the image space: Q0 ¼ Q. Recalling the standard
relations [33]

w02
0 ¼m2w2

0; z0R ¼m2zR; z00 ¼m2ðz− fÞ þ f; ð6Þ

between the original and new beam parameters, where
m ¼ f=½ðz − fÞ2 þ z2R�1=2 is the magnification, we find the
beam width at the detector position z0 to be

w02ðz0Þ ¼ w02
0

�
1þ

�
z0 − z00
z0R

�
2
�
: ð7Þ

Much in the same way as in Eq. (5), we have now

F 0ðzÞ¼
�∂zw02ðz0Þ
w02ðz0Þ

�
2

¼ 4ðf−z0Þ2½zz0−fðzþz0Þ�2
fðz2þz2RÞz02−2fz0ðz2þz2Rþzz0Þþf2½ðzþz0Þ2þz2R�g2

:

ð8Þ

The typical behavior of F 0 around the beam waist is shown
in Fig. 2. We observe the presence of well-resolved maxima
F 0

opt ¼ Q and minima F 0
min ¼ 0. While the beam in the

image space is symmetric about the waist, the response of
the beam width to small changes of the true distance z is
different inside and outside the waist, which makes the
Fisher information (FI) asymmetrical with respect to the
image waist. These extremal points are located at

zR

zR
w 0

w 0

z z

z0

FIG. 1. Scheme of the axial localization experiment with a relay
optical system.
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z0opt ¼
� z00 þ αz0R;

z00 − 1
α z

0
R;

ð9Þ

where α ¼ ðf − z − zRÞ=ðf − zþ zRÞ. In the geometrical
limit f − z ≫ zR, we have α ≃ 1 and z0opt ≈ z00 � z0R, so the
asymmetry disappears.
Observe that the information about axial displacements

is zero in the plane of the geometrical image z0g ¼
fz=ðz − fÞ, as the FI tends to zero therein. This is to be
compared with the information about transversal beam
localization. In this case, a small lateral shift Δr of a
Gaussian object of width w0 leads to a corresponding lateral
shift of Δr0 ¼ ½ðf − z0Þ=f�Δr of the detected Gaussian
profile of width w0ðz0Þ in the plane z0. A direct calculation
reveals that the resulting FI F 0

r about Δr is maximized by
placing the detector in the plane of the geometrical image
z0g, where the quantum limit is attained F 0

r;opt ¼ 1=w2
0, as

can be checked in Fig. 2. In this sense, optimal axial
localization (requiring considerable image blur) and trans-
verse localization (benefiting from sharpness) complement
each other. PSF engineering reaches a balance to resolve
this issue and provides a good three-dimensional resolu-
tion. However, these methods always broaden the PSF,
even more than our defocusing in zR.
Experiment.—To check the previous theory we have

used a classical microscopy setup, as schematized in Fig. 3.
It consists of an objective corrected for infinity and a tube
lens, all together providing a 20× magnification of the
output face of a single mode fiber representing a Gaussian
source. The fiber is coupled with a 632.8 nm He-Ne laser.
As the Rayleigh range zR at the fiber output is 18.9 μm,
the camera with 5.5 μm pixel size is moved 7.6 mm out of
the system nominal image plane to become aligned with
one of the optimal detection positions given in Eq. (9).
Controlled changes of the axial distance z were imple-
mented by moving the fiber axially using a piezo stage with
a resolution of 1 nm.

Note that the integrand in Eq. (4); viz, Fðr; zÞ ¼
r½∂zpðrjzÞ�2=pðrjzÞ can be seen as a radial density of
Fisher information. Using the normalized beam intensity
profile in the image space, this magnitude is plot in Fig. 4 at
the optimal detection plane z0opt, which hints at constructing
a robust estimator of axial displacement from the registered
intensity scans. The information drops to zero at rb ¼
w0
opt=

ffiffiffi
2

p
and the bulk of information (2=e ≃ 74%) resides

outside this boundary in the wings of the Gaussian intensity
distribution. We will call IdetðzÞ the intensity outside rb for
the object distance z. Then for small displacements δz from
the nominal position z we have

Idetðzþ δzÞ ¼ IdetðzÞð1 − δz=zRÞ: ð10Þ

This linear relation is readily inverted to yield an estimate
δ̂z of δz from Idet. Of course, we might be tempted to use the
maximum likelihood estimator based on the full profile.
However, this estimator turns to be a bit noisy due to
systematic errors [34]. On the contrary, our estimator δ̂z is
simple and robust. Nevertheless, we stress that we are

FIG. 2. Fisher information at the image space about axial (blue
solid line) and transversal (red broken line) positions of the object
waist in units of their respective QFI for different placements of
the detector. We use z ¼ 5, f ¼ 1, zR ¼ 1, w0 ¼ 1 and the
detector positions are relative to the beam waist in units of z0R.

FIG. 3. Experimental setup used to measure the axial displace-
ment z. See text for a detailed description.

FIG. 4. Normalized radial density of Fisher information (solid
blue line) and normalized beam intensity profile (dashed red line)
in the optimal detection plane, where the beam has a width w0

opt.
The system parameters are the same as in Fig. 2.
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interested in a proof-of-concept experiment, so small
deviations from the theoretical best performance are not
an issue.
We also notice that we are assuming that the nominal

axial distance is known. When this is not the case, Fig. 2
clearly indicates the loss of precision in the z estimate
associated with a nonoptimal detector placement. Quite
often, this is not a serious issue, as one can perform a
previous calibration (as we did in the experiment), and then
measure in a very precise manner around the nominal
value. If this is still not applicable, one can adopt an
adaptive approach, where a small part of the total resources
(photons) is allocated on a nonoptimally placed detection
and the detector position is refined according to the first
estimate of z. This process can be repeated and the optimal
detection plane hunted down in subsequent iterations.
Our experimental results are summarized in Fig. 5.

Measurement errors are consistent across the full range
of axial displacements δz ∈ ½10 nm; 1650 nm� averaging
24.8 nm. This is about 800 times below the depth of focus
zR and not much above the quantum limit of 14.9 nm
corresponding to the total number of 1.6 × 106 detections
registered for each δz setting.
Thus far we have focused on axial measurements with

Gaussian beams. What about uncooperative point sources?
In this case, the source generates a spherical (parabolic)
wave front, which after transiting a distance z enters an
imaging system that truncates the unbounded wave with a

pupil function. Keeping things simple and considering a
Gaussian pupil transmissivity of width wl the wave trans-
mitted by the pupil depends on z through

Uðx; y; zÞ ¼
ffiffiffiffiffiffiffiffi
2

πw2
l

s
exp

�
−
r2

w2
l

þ i
kr2

2

�
1

z
−
1

f

��
: ð11Þ

The state in the aperture is not just axial propagation from
the point source, as the pupil acts like a filter and one needs
to renormalize the state. The process is now not unitary and
the QFI cannot be calculated in terms of a generator G.
Instead, one has

1

4
QðzÞ¼h∂zΨðzÞj∂zΨðzÞi−h∂zΨðzÞjΨðzÞihΨðzÞj∂zΨðzÞi:

ð12Þ

In contrast with a Gaussian source, the result now reads

QðzÞ ¼ k2w4
l

4z4
; ð13Þ

which strongly depends on the true distance z.
Indeed, a parabolic wave transmitted through a Gaussian

apodized lens results in a Gaussian beam, which, alter-
natively, could have originated from a Gaussian beam and
an unapodized lens. Matching the beam width at lens
distance z from the Gaussian object (in the latter scenario)
to the width of the lens apodization (in the former scenario)
w2
l ¼ wðzÞ2 ≃ w2

0z
2=z2R ¼ 2z2=ðkzRÞ means the effective

Rayleigh distance of the Gaussian object simulating the
point source should obey 1=z2R ≃ k2w4

l =ð4z4Þ. Accidentally,
this heuristic derivation gives the exact QFI above. Given
the correspondence between the two scenarios, it is not
surprising that, as for Gaussian sources, the QFI of a point
source can be saturated with a single intensity scan
optimally placed with respect to the nominal image plane.
This is confirmed by free-space propagating (11), maxi-
mizing the classical FI associated with an intensity scan
over z0 and comparing the optimum to (13).
Going back to the quantum limit, it is intriguing to note

that n ¼ 2 × 106 detections like in our experiment regis-
tered with a one meter aperture wl ¼ 1 m in visible light
k ¼ 107 m−1 would theoretically provide axial localization
of a point source in a low Earth orbit z ¼ 200 km with
about 5 m accuracy.
In conclusion, we have theoretically and experimentally

demonstrated the axial superresolution based on direct
detection. The quantum limits for Gaussian beams or
apertures can be saturated with a single intensity scan
provided the camera is placed in one of two optimal
transversal detection planes. Hence, for axial localiza-
tion problem there is no advantage in adopting more
complicated detection schemes. Our method makes three-
dimensional superresolution imaging promising and can be

FIG. 5. Experimental estimation of axial displacements δz from
the nominal object plane with respect to which the camera is
optimally placed (9). The inset shows the statistics of the
estimator δ̂z as defined in Eq. (10). In the main plot the true
distance was subtracted from the estimates to get a more
convenient scale on the vertical axis. The blue strips depict
the quantum bound for the 2 × 106 detections and zR ¼ 18.9 μm.
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potentially useful for enhancing the resolution of optical
microscopes.
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