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We propose a mechanism of elementary thermal darkmatter with a mass up to 1014 GeV, within a standard
cosmological history, whose relic abundance is determined solely by its interactions with the standard model,
without violating the perturbative unitarity bound. The darkmatter consists ofmany nearly degenerate particles
which scatter with the standard model bath in a nearest-neighbor chain, and maintain chemical equilibrium
with the standardmodel bath by in-equilibriumdecays and inverse decays. The phenomenology includes super
heavy elementary dark matter and heavy relics that decay at various epochs in the cosmological history, with
implications for the cosmic microwave background, structure formation, and cosmic ray experiments.
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Introduction.—One of the biggest questions in funda-
mental physics is the nature of dark matter (DM). The
possibility that DM is a thermal weakly interacting massive
particle (WIMP), whose abundance is determined by 2 → 2
annihilations into standard model (SM) bath particles, is
exciting, but has alluded detection thus far. The WIMP is
particularly intriguing because it is very predictive—its
abundance is determined only by its interactions with the
SM, which informs us how it may be detected.
The WIMP paradigm has been a guide toward the

properties of DM, such as its mass and interactions. In
particular, within the WIMP freeze-out mechanism, there is
a an upper bound on the DM mass from perturbative
unitarity, of Oð100Þ TeV [1]. The reason is that the
WIMP annihilation rate is proportional to an exponentially
decreasing DM density, and so the amount of dark matter
that can be annihilated away before freeze-out is limited by
the theoretical size of the cross section.
Of course, DM may be much heavier than this bound,

if it is not a WIMP. Such models include nonthermal
dynamics, decoupled dark sectors, inflationary and gravi-
tational production, nonstandard cosmological histories,
and large entropy production [2–20]. In none of these cases,
however, is the DM abundance solely determined by its
interactions with the SM. The common lore is that an
elementary DM candidate that is thermally coupled to the
SM, within a standard cosmological history, cannot have

mass well above the WIMP perturbative unitarity bound.
Exceptions include composite DM, but still do not go much
beyond the above bound [21–24].
In this Letter, we present a new freeze-out mechanism

within a standard cosmological history. The DM is an
elementary particle that is thermalized with the SM at high
temperatures, its relic abundance is determined via its
freeze-out from the SM bath, and the DM mass can be
as high as 1014 GeV for s-wave processes, without violat-
ing the perturbative unitarity limit. In future work, we
show how Planck-scale DM can be reached for velocity-
dependent processes [25].
The general idea is as follows. The dark matter consists

of N approximately degenerate states, χi (i ¼ 1;…; N).
These states coscatter [26] off of the SM bath, but only in a
chain of nearest-neighbor interactions

χi þ sm ↔ χiþ1 þ sm; ð1Þ
while the Nth state codecays [27–32] in equilibrium with
the SM,

χN → smþ sm: ð2Þ
Here χ1 is the DM candidate. This setup is summarized in
Fig. 1. The processes in Eq. (1) can maintain chemical
equilibriummuch longer than annihilations can, because the
interaction rate for the scattering Γsctr ¼ nSMhσvisctr never
becomes exponentially suppressed. The in-equilibrium
decay allows for the whole system to have vanishing
chemical potential for a long time—if the Nth particle
was annihilating with the bath, the system would inherit
the unitarity bound from coannihilations. Finally, the chain,
which will typically require N > 5 − 20, depending on the
DM mass, ensures the stability of the DM χ1.
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General idea.—Consider a DM particle χ1, whose
density changes via scattering with a light SM bath particle

χ1 þ sm ↔ χ2 þ sm; ð3Þ
where χ2 has similar mass to χ1. This process can maintain
chemical equilibrium much longer than annihilations with
the same interaction strength, because the interaction rate
for the scattering does not depend on the DM density, and
therefore the rate does not become exponentially sup-
pressed. The DM is able to maintain equilibrium to smaller
temperatures, becoming more Boltzmann suppressed than a
WIMP for the same size cross section.
However, χ1 can only reduce exponentially for as long as

χ2 reduces exponentially (e.g., by maintaining chemical
equilibrium with the SM bath). Thus, in order to go beyond
the unitarity bound on annihilations, some other process is
still needed to reduce the χ2 density. If this process is
annihilations (such as χ2 þ χ2 ↔ smþ sm), then it will
freeze-out too early, and the unitarity bound on annihila-
tions will apply again. If instead, χ2 decays equilibrium
with the SM bath, chemical equilibrium can be maintained
for much longer. Thus, our proposed mechanism is a
combination of codecay and coscattering dark matter.
However, one can easily see that the combination of the

scattering process Eq. (3), and the in-equilibrium decay
process χ2 → smþ sm, will necessarily lead to the fast
decay of χ1 via an off-shell χ2. In the presence of a
coscattering chain, such that scatters take place only for
nearest neighbors

χi þ sm ↔ χiþ1 þ sm; ð4Þ
which codecay in equilibrium with χN ,

χN → smþ sm: ð5Þ
χ1 can instead be long lived; here χ1 is still the DM, but its
decay width is suppressed due to the large phase space
needed to decay to the SM (χ1 decays to 2N SM particles).
This is summarized in Fig. 1.
Two particle case.—As a toy example, we first work

through the simplest case of N ¼ 2 dark matter particles
with mass m. While this example is not cosmologically
viable, it demonstrates the basic idea of the mechanism.
Consider two degenerate states χ1 and χ2, which coscatter
[26] off of SM bath particles via the process

χ1 þ sm ↔ χ2 þ sm: ð6Þ
The dark matter candidate is χ1, while χ2 decays in
equilibrium with the SM bath.
The Boltzmann equations for the system are

_n1 þ 3Hn1 ¼ nsmhσviðn2 − n1Þ;
_n2 þ 3Hn2 ¼ nsmhσviðn1 − n2Þ − ðn2 − neq2 ÞΓ2; ð7Þ

where hσvi is a thermally averaged cross section for the
scattering process,neq is the equilibriumnumber density of χ,
andΓ2 is the decay rate of χ2 in the thermal bath. This system
is similar to the coscattering scenario [26], but here the DM
bath is kept in equilibrium with the SM bath via decays and
inverse decays rather than annihilations. Ultimately, since
decays and inverse decays can stay in equilibrium much
longer, this will allow for much heavier DM.
Unlike the case for freeze-out via annihilations, the

instantaneous freeze-out approximation will not give a
good estimate of the relic abundance. This is because the
rate for χ1 scattering, Γ ∼ nsmhσvi, is not dropping off
exponentially fast with the expansion, and therefore freeze-
out takes a long time. However, an approximate analytic
solution to the relic abundance can still be determined from
the Boltzmann equations, as we now detail.
If the decay rate Γ2 is larger than the Hubble expansion

parameter when the temperature T of theUniverse is equal to
the DM mass, the number density of χ2 closely follows its
equilibrium value. An approximate solution to the χ1 density
can then be found by considering the single equation

Y 0
1 ¼

λ

x2
ð−Y1 þ YeqÞ; ð8Þ

where Yi ¼ ni=s with s the entropy density, x ¼ m=T, and
λ ¼ ðnsmhσvi=HÞjx¼1. Here and throughout, the prime
denotes a derivative with respect to x. We have also assumed
that the thermally averaged cross section is velocity inde-
pendent and took the number of relativistic degrees of
freedom (d.o.f.) g⋆ ¼ g⋆s to be constant. Since the DM is
not scattering off of an exponentially falling density, freeze-
out is slow (and not approximately instantaneous like for a
WIMP). However, we define a freeze-out temperature,
x2fo ¼ λ, which is the temperature when Y1 departs its
equilibrium density, Yeq. The asymptotic value of the relic
abundance is

Y1ð∞Þ ≈ 45gχ
23=2π3g⋆s

λe−2
ffiffi
λ

p ≡ Y∞ðλÞ; ð9Þ

where gχ is the number of internal d.o.f. of a χ particle.
The fact that the relic abundanceEq. (9) scales asY1ð∞Þ ∼

e−2xfo and not as e−xfo (as one finds in the instantaneous
freeze-out approximation) is the result of the slow freeze-out.
After departure from equilibrium, χ1 creation stops, but χ1
will continue to scatter away. Neglecting the inverse process,
the Boltzmann equation can be approximated as

FIG. 1. Freeze-out mechanism: the dark matter consists of
many nearly degenerate particles which scatter with the standard
model bath in a nearest-neighbor chain and maintain chemical
equilibrium with the standard model bath by in-equilibrium
decays and inverse decays.
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Y 0
1 ≈ −

λ

x2
Y1; ð10Þ

where the solution isY1ðxÞ ¼ Y1ðxfoÞe½ðλ=xÞ−ðλ=xfoÞ�, and thus,
asymptotically Y1ð∞Þ ¼ Y1ðxfoÞe−xfo ∼ e−2xfo. This repro-
duces exponential power e−2xfo in Eq. (9). One also sees from
this solution that the abundance stops changing significantly
when xfin ∼ λ ¼ x2fo.
From the above estimation, one can find hσvi that

reproduces the observed relic abundance of dark matter,
while satisfying the unitarity bound. For instance, para-
metrizing the cross section as hσvi≡ α2=m2

χ , one finds that
for α ≃ 1, mχ ¼ 6 × 1014 GeV reproduces the correct relic
abundance (assuming the DM scatters off of 4 SM d.o.f.
and that g⋆s ¼ 106.75).
N > 2 degenerate case.—Although the simplest N ¼ 2

example does not work, it indicates a clear path forward to a
viable setup: suppressing the decay rate of χ1. We thus
consider N > 2 particles with the same type of nearest-
neighbor interactions as before. Similarly, we assume that
only χN is able to decay into SM particles, that the masses
are degenerate, and that the cross section for each inter-
action is the same. The equations of the system are

Y 0
1 ¼

λ

x2
ð−Y1 þ Y2Þ;

Y 0
j ¼

λ

x2
ðYj−1 − 2Yj þ Yjþ1Þ;

Y 0
N ¼ λ

x2
ðYN−1 − YNÞ − xλdðYN − Yeq

N Þ; ð11Þ

where the second equation is valid for j ¼ 2;…; N − 1,
λ ¼ ðnsmhσvi=HÞjx¼1, and λd ¼ ðΓN=HÞx¼1. Here prime
denotes a derivative with respect to x. We also ignore the
time variation of g⋆ and g⋆s, and assume that the cross
section is constant in the nonrelativistic limit. Note also that
we are interested in parameter space where λ; λd ≫ 1.
This system can be solved in similar fashion to the

N ¼ 2 case, by assuming YN ¼ Yeq and diagonalizing the
differential equations [33]. However, we can more simply
obtain a solution with the new N scaling by taking the large
N limit and taking flavor space to be continuous. For
N ≫ 1, the system behaves as a random walk between χj
states, with a reflecting wall at j ¼ 1 and an absorbing cliff
at j ¼ N (corresponding to the decay). Taking the indices
of j as a continuous variable l ¼ πj=½2ðN − 1Þ�, the
system is described by the diffusion equation

ð∂τ −D∂2
lÞYlðτÞ ¼ 0; ð12Þ

where τ ¼ −1=x and D ¼ π2λ=½4ðN − 1Þ2� is a diffusion
coefficient, and the boundary conditions are

∂lYjl¼0 ¼ 0; Yπ=2ðτÞ ¼ YeqðτÞ: ð13Þ

From the form of the diffusion equation, we see that the
system depends on the cross section only through the
combination D ≃ π2λ=4N2. From solving the boundary
conditions, the asymptotic profile Ylð∞Þ ∝ cosl. The
solution of the diffusion equations gives the relic abundance

Yjð∞Þ ≃ Y∞ðDÞ 4
π
cos

�
π

2

j
N

�
; ð14Þ

where Y∞ is defined in Eq. (9).
In Fig. 2, we plot the yield of the χi particles for N ¼ 10,

solving the full Boltzmann equations, Eq. (11). We find that
the relic abundances match the analytic estimate of Eq. (14)
within a factor of few (analytic estimate underestimates the
relic abundances by a factor of 5 in this example). In the
inset plot, we also show the relic abundances of each
particle, which agrees with the analytic estimate, Eq. (14).
Now, one must check that χ1 is sufficiently long lived to

be a viable DM candidate. A model-independent bound
on the DM lifetime is τ > 5 × 1018 sec [34] (for earlier
studies, see Refs. [35–46]). However, if the DM decays to
SM particles, constraints on the lifetime may be much
stronger, τ > 1027 sec (see, e.g., Refs. [47–49]).
The decay of χ1 to SM particles takes place only through

N − 1 off-shell χi particles, into 2N SM particles, with
decay width

Γ1 ¼
1

2m

Z
dΦ2N jMj2: ð15Þ

Treating the SM particles as massless, the total 2N-body
phase space is [50]

FIG. 2. Relic abundance of each particle with temperature
evolution. Here the masses are assumed to be degenerate, and the
decay rate of χN is chosen as ΓN ¼ 102HðmÞ to ensure that it
decays in-equilibrium. The horizontal dashed line is the observed
relic abundance of DM, while the solid black curve is the
equilibrium abundance. The orange solid line is the abundance
for χ10, which is the particle at the end of the chain in this
example, while the other colored lines give the density for χi
(i ¼ 1;…; 9). In the inset plot, the red dots show the distribution
of relic densities at x ¼ 2 × 104, normalized with Y1, while the
dashed line shows corresponding analytic estimate, Eq. (14).
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Z
dΦ2N ¼ 1

S
2π

Γð2NÞΓð2N − 1Þ
m4ðN−1Þ

ð16π2Þ2N−1 ; ð16Þ

where S is a symmetry factor accounting for identical
particles in the final state. We may approximate the squared
matrix element of the decay as [51]

jMj2 ≃ S2
1

m4N−4 jMj2ðN−1Þ
χsm→χsmjMj2χN→smþsm; ð17Þ

where the factor S2 accounts for expected number of
diagrams. The decay rate of χ1 is then estimated as

Γ1

ΓN
≃

S
ð2N − 1Þ!ð2N − 2Þ!

�
α2

16π3

�
N−1

: ð18Þ

Assuming the χN decay is in equilibrium ΓN > Hjx¼1,
requiring the stability of the DM, τ > 1027 sec, places a
lower bound on the number of dark matter particles N. For
instance, assuming that the DM decays to 2N identical SM
particles corresponding to S ¼ ð2NÞ!, we find for m ¼
107 GeV that N ≥ 5, and for m ¼ 1013 GeV that N ≥ 14.
In Fig. 3, we plot the minimum value of N as a function of
mχ , satisfying the lifetime requirement.
One may still be concerned about the relic abundances of

the particles other than χ1. For simplicity, we assumed that
the particles have exactly degenerate masses. Therefore, the
relic abundances of each particle is similar to that of χ1,
while the lifetime of each particle is much shorter than
that of χ1. Those heavy relics potentially decay to SM
particles between present Universe and Big Bang nucleo-
synthesis, leading to signatures already incompatible to
various cosmological observations. The relic density of

intermediate particles, however, could be exponentially
suppressed if the masses are not exactly degenerate, as
we will discuss in the following section.
Nondegenerate masses and couplings.—Up until now,

we have considered the case of exactly degenerate masses,
but it is natural to consider small mass splittings between
the particles. This will have two important effects: creating
forbidden channels and allowing the heavier states to decay
directly into the lighter states.
In standard two-particle forbidden annihilations, the mass

splitting is negligible if it is smaller than the temperature
when the abundance is still evolving, i.e., δm=m < x−1fo . For
the chain interactions, a similar condition is found,

ðmmax −mminÞ=mmin < x−1fin ¼ ðπ2λ=4N2Þ−1; ð19Þ

where mmax and mmin are the maximum and minimum
particle mass in the chain.
If the mass splitting is larger than this, then the evolution

will enter a forbidden regime. The abundance of the
lightest particle (the DM candidate) decouples when the
Boltzmann suppression factor due to the mass splitting
becomes significant and the chain reaction departs
from chemical equilibrium. After this point, the abundance
of the heavier particles continues its Boltzmann suppres-
sion, Yheavy ∼ e−Δm=T . Consequently, the relic abundances
of the heavier states are much smaller than that of the
lightest state when in the forbidden regime. We leave a
detailed study of this forbidden regime to future work.
The second important effect of the mass splitting is that

the heavier states can quickly cascade decay to the lightest
state (which is still very long lived). Depending on the size
of the mass splitting, the decays may be in- or out-of-
equilibrium. In any cases, the qualitative discussion of the
abundance computation will mostly remain unchanged
during the freeze-out since the effect of the cascade decay
and inverse decay can effectively be added to the Boltzmann
equation while maintaining the nearest-neighbor structure of
the system. If the decays are out of equilibrium, the heavier
states will simply transfer their abundances to the lightest
state, increasing the DM abundance by a factor OðNÞ. The
abundances of the intermediate particles are decayed away in
both cases, even though their density at the time of freeze-out
is similar to that of DM.
It is also reasonable to consider that the interaction

strengths may vary across the chain. In this case, the
Boltzmann equations are best solved by diagonalizing the
system of differential equations. The relic abundance is
approximately given by the degenerate case, but with the
cross section replaced by the smallest eigenvalue cross
section in the chain.
Phenomenology.—One of the main phenomenological

signatures of the mechanism are decays of long-lived relics.
Late time decaying DM (τ > 1010 yr) can potentially be
probed for all masses. DM decays can change the CMB
anisotropies and spectrum [52], but a detailed study for

FIG. 3. Number of dark matter particles versus DM mass. The
colored solid lines depict the minimal number of particles when χ1
decays through the chain [see Eq. (18)], while the gray solid lines
depict the samewithin an explicitmodel [seeEq. (25)]. For both,we
require that τ1 > 1027 sec. The purple line corresponds to χ1 decay
into 2N identical SMparticles, while thegreen line corresponds to a
pair of N identical SM particles in the final state. The dashed lines
are contours of α that reproduce the observed relic abundance,
when the cross section of chain reaction is parametrized as
hσvi ¼ α2=m2

χ ; this contour is model independent.
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very heavy dark matter has not been performed. Decays of
super heavy DM can source ultrahigh-energy cosmic
rays (UHECR), with energies ≳109 GeV. UHECR can
be observed in diffuse gamma ray satellites, such as
FERMI-LAT [53], high energy neutrino experiments, such
as IceCube [54], and dedicated UHECR observatories, such
as Auger [55]. For studies of the indirect detection of heavy
decaying DM, see Refs. [49,56–66]. Prospects for discov-
ering UHECR are expected to improve with the proposed
POEMMA mission [67].
Depending on the parameters of the theory (especially

the size of the mass splittings), some of the χi may decay at
various cosmological epochs. For instance, a component of
the DM could dissociate light elements during Big Bang
nucleosynthesis (see Ref. [68] and references therein).
Additionally, DM decay can lead to spectral distortions
in the CMB [69–71], which would be probed by the
proposed PiXiE experiment [72]. Partially decaying DM
has also been shown to alleviate several cosmological
tensions, such as the Hubble tension [73,74] and small
scale structure puzzles (see, e.g., Refs. [75,76]). For further
studies of multicomponent dark matter with varying life-
times, see Refs. [77,78]. A detailed exploration of the
phenomenology of our framework will be presented in
upcoming work [79].
A toy model.—Having described the general mechanism,

we now present a simple model realization. Consider the
Lagrangian

L ⊃ −
1

2
miχiχi − δmχiχiþ1 − ySχiχi − μSjHj2 − ỹχNLH;

ð20Þ
where χi (i ¼ 1;…; N) are left-handed Weyl fermions, S is
an SM singlet scalar field, L is the lepton doublet, and H is
the SM Higgs. The model is technically natural, since it
respects a ZN

2 symmetry that is broken by δm. Any
correction to off-diagonal masses must then depend on
some power of δm. For simplicity, we take δm to be flavor
independent; relaxing the assumption does not qualitatively
alter the results.
The mass matrix is given by

Mij ¼ miδij þ δmðδi;jþ1 þ δi;j−1Þ: ð21Þ
The above structure is similar to a tight-binding model
along a one-dimensional wire in a quantum mechanical
system. It is well known that the wave functions in such
system are localized at each site [80]. Assuming
Δm≡ ðmmax −mminÞ ≫ δm, the localization length is
[81,82]

ξ−1loc ≃ ln
Δm
2δm

− 1: ð22Þ

Because of localization, the mass eigenstate ψ i can be
approximated as

ψ i ∼
X
j

χj exp

�
−
ji − jj
ξloc

�
: ð23Þ

In the mass basis, the generated nearest-neighbor inter-
actions

L ⊃ ye−1=ξlocSψ iψ iþ1; ð24Þ

and non-nearest-neighbor interactions are exponentially
suppressed. With the interactions in mass basis, we can
map the model parameters to phenomenological variables
that we have introduced, for instance, hσvi≃ ðye−1=ξlocÞ2μ2=
ðπm4

SÞ for the momentum transfer smaller than the mediator
mass mS, and thus, α ¼ ðye−1=ξlocÞ= ffiffiffi

π
p

for μ ¼ mS ¼ mχ.
The mixing can generate the direct decay ψ1 → H þ L,

with width
�
Γ1

ΓN

�
mixing

≃ e−2N=ξloc ; ð25Þ

where ΓN ≃ ỹ2m=8π. Taking ΓN ¼ HðmÞ, we find

ξ−1loc ≳ 1

N

�
62þ log

m
1010 GeV

�
ð26Þ

to ensure that τ ≳ 1027 sec. The ratio between Δm and δm
controls both the relic abundance and the lifetime of DM in
this toy model. For the longevity of DM, a small localization
length is preferred, while, for the correct relic abundance, the
localization should be not so small as it could suppress the
nearest-neighbor interaction. In Fig. 3, we plot the minimum
number of heavy particles χi needed for the stability and the
observed abundance of dark matter, with the above relation
between α and the model parameters.
Summary.—In this Letter, we presented a new freeze-out

mechanism for super heavyDM that freezes out with the SM
within a standard cosmological history. The relic abundance
is determined solely via its interactions with the SM. For a
velocity-independent cross section, we showed theDMmass
could be as large as m ∼ 1014 GeV within the perturbative
unitary limit. In an upcoming Letter, we show how velocity-
dependent interactions, such as if the scatteringwasmediated
by a lightmediator, allow forDMto be as heavy as thePlanck
scale [25].
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