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Gravitational-wave astronomy offers not only new vistas into the realm of astrophysics, but it also opens
an avenue for probing, for the first time, general relativity in its strong-field, nonlinear, and dynamical
regime, where the theory’s predictions manifest themselves in their full glory. We present a study of
whether the gravitational-wave events detected so far by the LIGO-Virgo scientific collaborations can be
used to probe higher-curvature corrections to general relativity. In particular, we focus on two examples:
Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons gravity. We find that the two events with a
low-mass m ≈ 7 M⊙ BH (GW151226 and GW170608) place stringent constraints on Einstein-dilaton-

Gauss-Bonnet gravity, α1=2EDGB ≲ 5.6 km, whereas dynamical Chern-Simons gravity remains unconstrained
by the gravitational-wave observations analyzed.

DOI: 10.1103/PhysRevLett.123.191101

Introduction.—General relativity (GR) remains our
most accurate theory for the gravitational interaction
[1]. The centennial theory has passed a plethora of tests
ranging from those carried out in the weak-gravitational
field and low-velocity regime of our Solar System, to
those performed in the extreme, nonlinear, and highly
dynamical regime of plunging and merging compact
objects, such as neutron stars (NSs) and black holes
(BHs) [2,3]. The agreement between the observations
and predictions is dazzling. In turn, any new observation
that may hint toward a failure of GR will require us to
revisit its foundations. Experimental tests of GR not only
allow us to place its foundational principles on solid
ground, but they also allow us to constrain (or even rule
out) contending theories that violate one or more of its
pillars. Such contending theories have been developed
to address certain outstanding mysteries in recent
observations [4,5], such as the enigmatic late-time accel-
eration of the Universe [6,7], the matter-antimatter
asymmetry in our Universe [8,9], and the rotation curve
of galaxies [10,11].
One broad class of modifications to GR that arise

naturally in attempts to unify gravity with quantum
mechanics are quadratic gravity theories [12]. This class
of theories is characterized by the presence of an additional
scalar degree of freedom (violating the GR pillar that
gravity is mediated by a single metric tensor) coupled to a
higher-order curvature scalar. Two preeminent examples of
such theories are Einstein-dilaton-Gauss-Bonnet (EDGB)
and dynamical Chern-Simons (DCS) gravity [13]. Both of
these emerge naturally in the context of grand unified
theories (string theory in particular) in the low-energy limit

upon dimensional reduction. Phenomenologically, they
predict BHs that carry a nontrivial scalar field, resulting
in a violation of the strong equivalence principle.
Aside from these theoretical motivations, are EDGB and

DCS gravity consistent with experimental tests? Within the
confines of our Solar System, the parameterized-post-
Newtonian parameters of EDGB gravity are identical to
those of GR [14], and therefore the theory survives all
experimental tests in this regime. In contrast, DCS gravity
contains a nonzero (different from GR) parameter that leads
to modifications in the Lense-Thirring precession of spin-
ning bodies [15,16]. Solar System experiments such as
LAGEOS [17] and Gravity Probe B [18] can place
constraints on the DCS coupling parameter, but due to
the weak curvatures in the Solar System, these constraints
are extremely weak [19]. Exquisitely accurate binary-
pulsar observations suffer the same fate. The post-
Keplerian motion of NS binaries in EDGB and DCS
gravity is very similar to that in GR, because the scalar
field sourced by such stars is suppressed relative to that
created by BHs, which means that constraints with present
day binary pulsar observations are not possible [12,20].
This leaves us with gravitational wave (GW) observa-

tions as a last resort. In recent years, considerable effort
has been made in modeling the inspiral [21–23], merger
[24–27], and ringdown [28,29] phases of compact binaries
in these two theories. One could then imagine comparing
such waveform models against the GW data to determine
how small the EDGB and DCS coupling parameters must
be in order to be consistent with statistical noise. We build
on these efforts and use the constraints on GR deviations
obtained by the LIGO-Virgo collaboration (LVC) [30]
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to analyze whether these two theories can be constrained
with the binary BH events detected during the first two
observation runs of the LVC. More specifically, we will
consider the binary BH events in the LIGO-Virgo Catalog
GWTC-1 GW150914 [31,32], GW151226 [33],
GW170104 [34], GW170608 [35], and GW170814 [36]
for which the posteriors on theory-independent GR mod-
ifications, obtained through a Markov-chain Monte Carlo
(MCMC) exploration of the parameter space, have been
made public [3,37].
Quadratic gravity.—DCS and (decoupled) EDGB the-

ories are defined in vacuum by the Lagrangian density [12]

LDCS¼ κR−
1

2
∇μϑDCS∇μϑDCSþ

αDCS
4

ϑDCS
�RR; ð1Þ

LEDGB¼ κR−
1

2
∇μϑEDGB∇μϑEDGBþαEDGBϑEDGBG; ð2Þ

where κ≡ ð16πÞ−1, g is the determinant of the metric gμν,
�RR ¼ Rνμρσ

�Rμνρσ is the Pontryagin density (constructed
in terms of the Riemann tensor and its dual), G ¼ R2 −
4RμνRμν þ RμνρσRμνρσ is the Gauss-Bonnet density (where
R and Rμν are the Ricci scalar and tensor), and we have used
geometric units, in which c ¼ 1 ¼ G. These quadratic-in-
curvature scalars are coupled to a massless scalar (pseudo-
scalar) field ϑ through the coupling constants αEDGB (αDCS),
both with units of ðlengthÞ2. In EDGB, the coupling to the
Gauss-Bonnet density is usually of exponential form. We
here work in the decoupling (effective field theory) limit, in
which the exponential is expanded to linear order [12].
To ensure the perturbative well-posedness of these

theories, we work in the small-coupling approximation,
in which modifications to GR are small deformations. This
is a justified assumption given the agreement of GR with
various observations, GW events included. It is convenient
to define the dimensionless parameter ζDCS;EDGB≡
α2DCS;EDGB=ðκl4Þ, where l is the typical mass scale of a
system. For the small-coupling approximation to be valid,
we must have ζDCS;EDGB < 1 or α1=2DCS;EDGB=ms ≲ 0.5 where
ms is the smallest mass scale involved in the problem.
Note that 0.5 is a rough threshold which we use as a proxy
for the validity of the approximation.
Consistency with Solar System experiments (in DCS)

and with low-mass x-ray binary observations (in EDGB)
impose the upper bounds α1=2DCS ≤ Oð108 kmÞ [13,19] and
α1=2EDGB ≤ Oð2 kmÞ [38].
How can the GWs emitted by BH binaries in these

theories be different from GR’s predictions? In both
theories, BHs support a nontrivial scalar field—dipolar
in DCS [39] and monopolar in EDGB [40]—which results
in the emission of scalar quadrupole (in DCS) and scalar
dipole (in EDGB) radiation during the inspiral. This addi-
tional channel for binding energy loss results in modifica-
tion to the GW phase, which appear at 2PN (for DCS)

[in the PN formalism, quantities of interest such as the
conserved energy, flux etc., can be written as expansions in
(v=c), where v is the characteristic speed of the binary
system and c is the speed of light. O½ðv=cÞn� corrections
counting from the Newtonian (leading order GR) term are
referred to as (n=2)PN-order terms [41,42] ] and -1PN (for
EDGB) order. In DCS gravity, the scalar field also
introduces a quadrupolar correction to the binary BH
spacetime, introducing 2PN corrections to the binding
energy, which in turn affect the GW phase evolution at
the same PN order. Hereafter, we use these facts, together
with the estimates of the GW model parameters and the
posterior distributions released in [3,30], to investigate how
well (if at all) the observed GW events in the LVC catalog
can be used to constrain these theories.
Order of magnitude constraints.—It is illuminating to

start with a simple order-of-magnitude calculation to
assess if the binary BH events detected by LIGO-Virgo
can place any constraints on DCS and EDGB gravity.
Consider the Fourier domain gravitational waveform
h̃ ¼ AðfÞ exp½iΨðfÞ�, and for simplicity we assume that
the spins of the compact objects are (anti)aligned to the
orbital angular momentum. Under these assumptions, the
leading-order modification to the Fourier phase ΨðfÞ takes
on the parametrized post-Einsteinian (PPE) form [2]
Ψ ¼ ΨGR þ βðπMfÞb, where bDCS ¼ −1=3 in DCS grav-
ity (a 2PN correction) and bEDGB ¼ −7=3 in EDGB gravity
(a -1PN correction). The amplitude coefficient β is

βDCS¼−
5

8192

ζDCS
η14=5

ðm1sDCS2 −m2sDCS1 Þ2
m2

þ 15075

114688

ζDCS
η14=5

1

m2

�
m2

2χ
2
1−

305

201
m1m2χ1χ2þm2

1χ
2
2

�

ð3Þ

in DCS gravity (see [43]) [46] and

βEDGB ¼ −
5

7168

ζEDGB
η18=5

ðm2
1s

EDGB
2 −m2

2 s
EDGB
1 Þ2

m4
; ð4Þ

in EDGBgravity [21], whereM¼ðm1m2Þ3=5=ðm1þm2Þ1=5
is the chirp mass, η ¼ m1m2=m2 (with m ¼ m1 þm2) is
the symmetric mass ratio, χs;a ¼ ðχ1 � χ2Þ=2 are the sym-
metric and antisymmetric dimensionless spin combinations
with χi ¼ S⃗i · L̂=m2

i the projections of dimensional spin
angular momenta S⃗i in the direction of the orbital angular
momentum L̂ and

sDCSi ¼2þ2χ4i −2ð1−χ2i Þ1=2−χ2i ½3−2ð1−χ2i Þ1=2�
2χ3i

; ð5Þ

sEDGBi ¼2½ð1−χ2i Þ1=2−1þχ2i �
χ2i

; ð6Þ
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are the dimensionless spin and mass-dependent BH scalar
charges, to all orders in spin, in both theories [44,46,47].
Although βDCS has uncontrolled remainders ofOðχ4Þ, βEDGB
is valid to all orders in the spin. We can obtain an order-of-
magnitude bound on ζDCS;EDGB using the best-fit parameters
from GW170608 and doing a crude Fisher matrix analysis
(we use this particular event as an example because it will
allows us to compare our analytical estimatewithmore robust
calculations later). Given that the event is consistent withGR,
we can ask how large ζDCS;EDGB can be and yet remain
consistentwith the event. For sufficiently high signal-to-noise
ratio (SNR)ρ, the accuracy atwhich a parameter θa of theGW
model can be estimated from the Cramer-Rao bound [48]
Δθa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þaa

p
where the Fisher matrix is

Γab ≡ 4Re
Z

fmax

fmin

∂ah̃ðfÞ∂bh̃
�ðfÞ

SnðfÞ
df; ð7Þ

and the asterisk stands for complex conjugation. The partial
derivatives are taken with respect to the model parameters θi

and SnðfÞ is the spectral noise density of the detector. The
integration limits denote the lower and upper cutoff frequen-
cies at which the detector operates. For a rough estimate, it
suffices to neglect correlations between model parameters,
and thus, Γab is approximately diagonal. With this, one then
finds that the variance satisfies ðΔζÞ2 ¼ 1=Γζζ, which can be
evaluated analytically assuming white noise. This matrix
element is dominated by the lower limit of integration fmin,
and thus, one finds that

ðΔαDCS;EDGBÞ1=2 ≳
�
1 −

3bDCS;EDGB
2

�
1=8

×
ðπM̂fminÞ−bDCS;EDGB=4

ð16πρ̂Þ1=4
m̂

β̂1=4DCS;EDGB

;

ð8Þ

where the overhead hat stands for the best-fit values, with
ζDCS;EDGB set to unity in β̂DCS;EDGB. As the individual spins χi
could not be resolved for the events we are considering,
we assign χ1 ¼ χeffðm=m1Þ and χ2 ¼ 0 to proceed. Using
fmin ¼ 10 Hz and the SNR ρ̂ and median values form1,m2,
and χeff , we obtain ðΔαDCSÞ1=2 ≈ 1.1 kmand ðΔαEDGBÞ1=2 ≈
1.0 km at 90% credibility. These bounds agrees well with the
forecast made in [46] for DCS and in [49] for EDGB.
Fisher-estimated constraints on LIGO-Virgo data.—We

also perform a fully numerical calculation of the Fisher
matrix, by modeling the binaries with the phenomenolgical
waveform template IMRPhenomD [50,51] We make similar
assumptions for the fiducial parameters as we made to
obtain the order of magnitude constraints and consider
5 GW events, GW150914, GW151226, GW170104,
GW170608, and GW170814 (cf. Table III in [30]). The
bounds obtained for the two most constraining events,

GW151226 and GW170608 are shown in Table I and they
are in good agreement with our order-of-magnitude calcu-
lation for both theories. The Fisher-estimated constraints
for DCS gravity are not shown because they violate the
small coupling approximation, as we will discuss in more
detail below.
Bayesian-estimated constraints on LIGO-Virgo data.—

The LVC recently released constraints on model-
independent deviations from GR to check consistency of
the GWevents with GR predictions [3,37]. The model used
to capture these deviations is a variant of IMRPhenomPv2

[50,52–54], where parameterized relative shifts in the
PN coefficients of the Fourier phase of IMRPhenomPv2 are
introduced, namely

ϕi → ϕið1þ δϕiÞ; ð9Þ

with δϕi then treated as additional free parameters in the
model. This modification is nothing but an implementation
of the PPE framework [2,55], as shown explicitly in [44],
with the mapping

βDCS ¼
3

128
ϕ4δϕ4η

−4=5; ð10aÞ

βEDGB ¼ 3

128
δϕ−2η

2=5; ð10bÞ

where ϕ4 is the GR coefficient of the Fourier phase at 2PN
order (cf. Appendix B in [51]). Since the predictions from
both DCS and EDGB theories can be mapped to the PPE
framework, one can propagate the LIGO-Virgo bounds on
δϕ−2 and δϕ4 to constraints on the DCS and EDGB
coupling constants. More specifically, we use the posteriors
provided by the LVC on δϕ−2 and δϕ4 to first obtain
constraints on βDCS and βEDGB, which we then translate into
constraints on α1=2DCS and α1=2EDGB using Eqs. (3)–(4).
The 90% constraints on α1=2DCS and α1=2EDGB are shown in

Table I for the two most constraining events (GW151226

TABLE I. Current constraints on EDGB and DCS gravity from
low-mass x-ray binary and Solar System observations, respec-
tively, with the Fisher-estimated constraints, and Bayesian con-
straints using LVC (testing GR) posteriors for GW151226 and
GW170608 [3,37].

System Method α1=2EDGB [km] α1=2DCS [km]

Current Frequentist 2 108

GW151226 Estimate 0.9 0.5
Fisher 6.0 � � �
Bayesian 5.7 � � �

GW170608 Estimate 1.0 1.1
Fisher 3.9 � � �
Bayesian 5.6 � � �
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and GW170608) and the corresponding posterior distribu-
tions are shown in Fig. 1. The Fisher estimates, although
quite close to the constraints using posteriors derived from
GW data, are overoptimistic since they assume a Gaussian
posterior around the peak, which we see in Fig. 1 is not
correct. Moreover, since the Fisher analysis is a point
estimate, it is difficult to gauge its robustness. On the other
hand, a MCMC exploration of the posterior surface helps
us evaluate explicitly how much support the posterior
distributions have in the regions of validity set by the
small-coupling approximation.
Constraints on quadratic gravity theories that employ the

small-coupling approximation are robust only provided the
former satisfy the requirements of the latter. For the systems
considered, this translates to α1=2DCS;EDGB ≲ 5.6 km, which is
shown with vertical lines in Fig. 1. For DCS gravity (left
panel of Fig. 1), more than 99% of the posterior distribution
of α1=2DCS lies beyond this region of validity for GW151226
and GW170608 and for all the other events we considered.
Consequently, we cannot place constraints on DCS

gravity with the events for which the posteriors samples
obtained by LIGO-Virgo have been released.
For EDGB, the situation is strikingly different. As one

can observe in the right panel of Fig. 1, more than 90% of
the posterior distribution falls within the requirements of
the small-coupling approximation for the GW151226 and
GW170608 events. This implies that a 90% bound of
α1=2EDGB ≲ 5.6 km is statistically meaningful and can be
placed on EDGB gravity using these two events. This is

not the case for the other events (GW150914, GW170104,
and GW170814), for which constraints would violate the
small coupling approximation.
We emphasize that the location of the peaks in the

posteriors of Fig. 1 do not indicate a deviation from GR.
Rather, the lack of support at zero is an artifact of the choice
of the sampling variable δϕi and its functional dependence

on α1=2DCS;EDGB. A uniform prior in δϕi translates to a

nonuniform prior on α1=2DCS=EDGB with almost no support

near α1=2DCS;EDGB ¼ 0. One can reweight the α1=2DCS=EDGB

posteriors with the priors to obtain better estimates,
albeit at the cost of introducing binning errors close

to α1=2DCS=EDGB ¼ 0.
Alternatively, this issue could be avoided by sampling

directly in αDCS;EDGB instead of in the generic parameter
δϕi. We expect that this would shift our 90% bound to the
left, thereby improving our bounds, and hence our con-
straints are conservative and robust to changes in the
sampling variable.
The fact that GW151226 and GW170608 have more

constraining power than their cousins is not surprising.
These two events were produced by binaries in which the
secondary BH had the lowest mass (m2 ≈ 7 M⊙) of all
events in the catalog. Quadratic gravity theories introduce
new length scales, and deviations from GR are thus
proportional to the curvature scale, which for BH binaries
scales inversely with the square of the lowest mass, m−2

2 .
Hence one can expect the largest deviations for GW151226

D D

FIG. 1. Posterior distributions of α1=2DCS (left panel) and α1=2EDGB (right panel) obtained using GW151226 and GW170608. For the GW
events shown in both panels, m2=M⊙ ¼ 7.7þ2.2

−2.6 (GW151226) and m2=M⊙ ¼ 7.6þ1.3
−2.1 (GW170104) at 90% credibility. This implies that

the small-coupling approximation is valid only when α1=2DCS;EDGB ≲ 5.6, shown as vertical lines in the plots. For DCS gravity (left-panel)
we see that most of the support of the posterior distributions of these two events lays passed the bounds set by the small-coupling
approximation. Consequently, one cannot place constraints on α1=2DCS with these two events. For EDGB gravity (right-panel) most
(> 90%) of the support of the posteriors lays within the bound, therefore allowing us to constrain the theory with these two events. For
the other three events, which contain a large m2 (≳13 M⊙) BH [30], the vertical lines are pushed towards the left, leaving most of the
support for the posterior outside the small-coupling approximation bound. We stress that the location of the peaks in the posteriors are
not an indication of a deviation from GR. Instead, as detailed in the main text, the lack of support at zero is an artifact of the choice of the
sampling variable δϕi.
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and GW170608 and thus, the strongest constraints. In
DCS gravity, the modifications enter at 2PN order, and
thus, they are much more weakly constrained than the
EDGB modifications, which enter at -1PN order. This
deterioration in the constraint then implies that a large
percentage of the posterior weight is outside the regime of
validity of the small coupling approximation, rendering
the constraint invalid.
Fundamental physics implications.—Our results dra-

matically constrain EDGB gravity, essentially confining
deviations from GR due to this theory down to the horizon
scale of stellar mass BHs. These constraints are competitive
with those obtained in [38] (α1=2EDGB ≲ 2 km at 95% con-
fidence level) from the orbital decay on the BH low-mass
x-ray binary A0620-00, which probes the theory in a
different energy scale. Our constraints, however, have
the advantage of being robust to astrophysical systematics,
unlike those placed in [38], which require assumptions
about the mass transfer efficiency and the specific angular
momentum carried by stellar winds.
The constraint we have placed on (decoupled) EDGB

gravity is stringent, limiting this type of quantum-inspired
violation of the strong equivalence principle, the strength of
the scalar monopole charge carried by black holes, and the
possibility of using EDGB gravity to explain the late-time
acceleration of the universe. However, our constraints do
not directly apply to other functional couplings between the
Gauss-Bonnet density and a scalar field. For example, in
models where BHs acquire charges through spontaneous
scalarization [56–60], BHs are identical to GR unless they
fall within certain mass intervals (at fixed coupling param-
eter of the theory) and thereby can (in principle) mimic
binary BH mergers in GR.
Our results also have important implications for restrict-

ing parity violation in the gravitational interaction.
Recently, a broad class of ghost-free, parity-violating
theories, which in four dimensions requires the presence
of a massless scalar field, was presented [61]. In [62–64],
these theories were tested against the exquisite constraint
obtained on the speed of GW propagation from the binary
NS event GW170817/GRB 170817A, which estimated that
cGW is the same as the speed of light in vacuum to one part
in 1015. DCS gravity is the only ghost-free, parity-violating
theory in four dimensions that is consistent with this
constraint [62,65]. Therefore, our results, combined with
those by [62], leave DCS as the single subclass of the broad
set of parity-violating theories of gravity which remains
consistent with observations.
Future work could focus on constraints on other modi-

fied theories within the broad class of quadratic gravity
models [12]. Alternatively, one could include GW ampli-
tude corrections due to EDGB and DCS gravity to
determine whether GW constraints become stronger [45].
Finally, one could study how well future ground-based and
space-based detectors could constraint quadratic gravity

theories, or the type of system that would be ideal to place
constraints the hitherto evasive DCS gravity.
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