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We characterize the early stages of the approach to equilibrium in isolated quantum systems through the
evolution of the entanglement spectrum. We find that the entanglement spectrum of a subsystem evolves
with three distinct timescales. First, on an o(1) timescale, independent of system or subsystem size and the
details of the dynamics, the entanglement spectrum develops nearest-neighbor level repulsion. The second
timescale sets in when the light cone has traversed the subsystem. Between these two times, the density of
states of the reduced density matrix takes a universal, scale-free 1/f form; thus, random-matrix theory
captures the local statistics of the entanglement spectrum but not its global structure. The third time scale is
that on which the entanglement saturates; this occurs well after the light cone traverses the subsystem.
Between the second and third times, the entanglement spectrum compresses to its thermal Marchenko-
Pastur form. These features hold for chaotic Hamiltonian and Floquet dynamics as well as a range of

quantum circuit models.
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Understanding how an isolated quantum system reaches
thermal equilibrium is a central problem in quantum
statistical physics. Substantial progress has been made
on the late-time aspects of thermalization based on the
eigenstate thermalization hypothesis [1-5] which implies
that small enough subsystems are well described by thermal
density matrices if one waits long enough for information
to have traversed the entire system. Much numerical [3,5,6]
and experimental [7] evidence now exists for eigenstate
thermalization. However, the mechanism by which a local
density matrix goes from being disentangled to being fully
thermal is still poorly understood. Some coarse grained
features of the thermalization process have recently been
characterized numerically through the study of random
unitary circuits (RUCs) [8—16]. In special limits of RUCs
and fine-tuned models such as the self-dual kicked Ising
model [17], exact solutions are available for entanglement
growth and the scrambling of local operators. However,
these solvable cases are nongeneric and miss important
aspects of the generic thermalization process.

The present Letter addresses the dynamics of entangle-
ment and thermalization at early times in generic systems
(i.e., nonintegrable models with a low-dimensional on-site
Hilbert space); here, entanglement spectra [i.e., eigenvalues
of the reduced density matrix] [18-23] evolve in a highly
nontrivial way: behavior that is absent in the aforemen-
tioned solvable limits. The picture that emerges is inde-
pendent of how the dynamics is generated, holding for
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Hamiltonian, Floquet, and temporally random dynamics,
for systems with and without conservation laws, and for
chaotic as well as many-body localized systems. Here, we
focus on Hamiltonian dynamics and RUCs; for other cases
see [24].

We show that the process of thermalization takes place in
three stages; our main new results are that the entanglement
spectra behave universally even at relatively early times as
demonstrated in Fig. 1, although its early- and late-time
properties belong to different universality classes. To
explain these regimes, we introduce multiple characteristic
timescales in the entanglement evolution: (i) the timescale
on which the entanglement spectrum develops nearest-
neighbor level repulsion, (ii) the timescale on which the
rank of the density matrix [i.e., the Rényi entropy S, in
Eq. (3)] saturates, and (iii) the timescale on which the
reduced density matrix (RDM) saturates to its late-time
behavior. One of our main results is that timescale (i) is
independent of system and subsystem size and insensitive
to the nature of the dynamics. A second main result is that
the spectrum of the reduced density matrix between time-
scales (i) and (ii) exhibits a universal, scale-invariant 1/f
density of states. This distribution spreads over increasingly
many decades as time passes, until we hit timescale (ii).
Once again, this behavior is present in all the models we
have considered but is absent in the exactly solvable limits.
Finally, between timescales (ii) and (iii) the range of the 1/ f
distribution shrinks, and narrows toward the late-time
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FIG. 1. Spectral properties of the reduced density matrix under

generic time evolution. (a) Spectral density of the reduced density
matrix for random unitary (R) and chaotic Hamiltonian (H)
dynamics at early times; this follows a 1/ distribution (dashed
line). (b) Adjacent gap ratio of the entanglement spectrum, as a
function of time, comparing R and H dynamics. Colors denote
the model (red for R and blue for H); for each color, empty
symbols are for system size L = 12 and subsystem size [, = 6,
whereas filled symbols are for L = 16, [, = 8. The random-
matrix prediction [(r) ~0.599] is marked with a dashed black
line. (¢),(d) Evolution of entanglement bandwidth w and von
Neumann entanglement entropy S, for R and H dynamics with
L =16, I, = 8. For both R and H dynamics, the entanglement
bandwidth grows until t=1,/2, then shrinks, whereas the
entanglement entropy keeps growing.

Marchenko-Pastur form [19]; during this entire process the
entanglement entropy is still growing. For quantum circuits,
which have a strict light cone (LC), there is a sharp transition
between these regimes, set by the subsystem size. For
Hamiltonian dynamics, this is rounded into a crossover
(due to the exponential tails in the Lieb-Robinson bound
[25]) but the two temporal regimes are still clearly distin-
guished in practice [Fig. 1]. Our main findings are absent in
exactly solvable limits, where the entanglement density of
states is a delta function at all times, and consequently, the
nearest-neighbor level spacing is not defined.

We capture level statistics beyond nearest-neighbor
using an appropriate entanglement spectral form factor.
At short times, the spectral form factor of the entanglement
spectrum has a “ramp” feature characteristic of level
repulsion but does not quantitatively behave as random-
matrix theory would predict. Further, the spectral form
factor drifts with time until very late times when the
entanglement has saturated; only then does it take on its
universal shape dictated by random matrix theory. Thus,
our results clarify the sense in which such systems are
“locally thermal”: although the coarse structure of the
reduced density matrix is far from that of a thermal state, its
“short-distance” level statistics look thermal.

Models.—The main results outlined above were checked
for a variety of models under both discrete-time evolution
(i.e., quantum circuits) and continuous-time Hamiltonian
evolution. The quantum circuits considered here all
involve time-evolution operators of the form U(r) =
U(t,t—1)U(t—1,t—2)---U(1,0), where

® Ui f=1),

Ul =1)= @ Uy (. /' =1)
ie27 ie27+1
(1)

with i being the site index and U,,.; being unitary
matrices. When written as a matrix in the many-body
Hilbert space, the gates are very sparse, and therefore, we
simulate them exactly using sparse matrix-vector multipli-
cation. In the main text, we present results for circuits in
which these unitaries are randomly chosen at each point in
space and time; we draw them either completely randomly
(with Haar measure) or from an ensemble of random
matrices with a single conservation law [12]. We have
also simulated the Floquet versions of these circuits but find
no noticeable differences in entanglement spectra between
the temporally random and Floquet cases. One other case—
a Floquet model that is many-body localized [26] rather
than chaotic—is shown in [24]. Although the evolution of
S, is very different in this case, the entanglement spectrum
still shows level repulsion and a 1/ f distribution in its bulk:
chaos matters only for the largest few Schmidt coefficients.

To study Hamiltonian evolution, we consider the Ising
model with both transverse and longitudinal fields

H= ZJGIZ»GIZ-+1 + h,ot + h.o}, (2)

where ¢¢ are spin-1/2 Pauli operators. For our simulations,
we choose the parameters (h,/J, h,/J) = (0.9045,0.809),
corresponding to a nonintegrable regime in which thermal-
ization is known to be fast [27,28]. We use a Krylov-space
method to efficiently time evolve the state [29].

Measured quantities.—The RDM of any subsystem has
non-negative real eigenvalues {4, }. Since broad distribu-
tions are present, it is helpful to work with the entanglement
spectrum, which has eigenvalues {E,} = {—log4,}. The
entanglement density of states is given by og(E) =
D='>" 8(E—E,) where D is Hilbert space dimension
of subsystem A, and the entanglement bandwidth is the
width of this probability distribution [30]. The Renyi
entropies are moments of the {4,}

Sa=1 ialog (Zz“> (3)

We quantify level statistics via the adjacent gap
ratio r [31]
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where o, =E, —E,_; and the FE,, are arranged in
ascending order. The average adjacent gap ratio takes
the value (r) ~0.599 for the Gaussian unitary ensemble
(GUE); its probability distribution also approaches a
universal form [31].

The adjacent gap ratio is only sensitive to the level
repulsion of neighboring eigenvalues. To quantify “longer-
range” level repulsion we study the spectral form factor of
the entanglement spectrum, which is the Fourier transform
of the two-point function of the spectral density in the
entanglement spectrum. We term this the “entanglement
spectral form factor” (ESFF). The ESFF characterizes the
global level statistics of the entanglement spectrum and is
expressed as

D(6) = <Z; ei9<En—Em>>. (5)

Here, 0 denotes an auxiliary “time” variable conjugate to
the entanglement “energy.” For a GUE random matrix, the
spectral form factor has a linear growth in 6, called the
ramp, followed by a sudden saturation, reaching its plateau
value [32]. A precise ramp-plateau structure can be
obtained by subtracting out the disconnected parts
|(>=, exp(i0E,))|?, which defines the connected ESFF
D.(0) = D(9) — |(>_, exp(i0E,))|>. These form factors
have the advantage of capturing gap correlations beyond
nearest neighbor, but the disadvantage of being sensitive
to the overall entanglement density of states (DOS)
[Fig. 1(c)]. Note that the ESFF is not the unique spectral
form factor one can construct for the reduced density
matrix; instead, we could have constructed a spectral form
factor from the eigenvalues of the reduced density matrix
[24]. However, the ESFF has the crucial advantage that its
asymptotic large-6 behavior is set by the large Schmidt
coefficients and, therefore, is sensitive to the late stages of
the thermalization process.

Under Hamiltonian dynamics, the eigenstate thermal-
ization hypothesis implies that, at late times, the reduced
density matrix takes the form p, = exp(—H,/T), where T
is the temperature set by the global energy density [5].
Thus, the ESFF matches the spectral form factor of the
Hamiltonian (projected into the subsystem), up to rescal-
ing. On the other hand, under random unitary dynamics,
even when there is a conservation law, the conserved
quantity is not the generator of the dynamics. Hence, the
ESFF acts as a measure of how random the state is, and its
late-time structure is what one would predict from a random
pure state [33]. We find that both spectral form factors settle
down to a time-independent function that is consistent with
the shape predicted from random matrix theory once the
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FIG. 2. Pure random unitary circuits: (a) The disconnected
ESFF D(0) and (b) the connected ESFF D, (@) for various
different times. The legend in (a) is shared across these figures.

entanglement entropy has completely saturated (see Fig. 2
and [24)).

Purely random circuits.—First, we discuss our results for
the purely random case. In this case, each gate is picked
Haar-randomly at each space and time point. The distri-
bution of RDM eigenvalues becomes broad at short times
(t < 14/2, where I, is the size of the subsystem) following
a universal scale free 1/f distribution [Fig. 1(a)]. The
entanglement level statistics rapidly approach its random-
matrix value on an o(1) timescale [Fig. 1(b)] that is
independent of the system and subsystem size [24]. The
entanglement bandwidth initially grows linearly in time,
out to a time 7 = l,/2 when the light cone hits the edge
of the subsystem and then decays algebraically to a small
steady state value [Fig. 1(c)]. During this short time
dynamical process, the entanglement entropy continues
to grow until it saturates at time scale set by the system size
[Fig. 1(d)]. In Fig. 2, we show the behavior of the ESFF in
this model, for L = 20, [, = 8. The ESFF develops a ramp-
plateau structure at early times, corresponding to the short
timescale on which level repulsion sets in among the
entanglement “energy levels.” However, the overall shape
of the ESFF drifts over time, until the entanglement
bandwidth and entanglement entropy have saturated.

Random circuits with a conservation law.—To test
whether these results are restricted to fully random circuits,
we turn to the case with a conserved quantity, which we
take to be the z component of the spin. For spin-1/2
degrees of freedom, the most general conserving two-spin
gate acts as a random phase on the states |11) and || ),
and a random 2 x 2 matrix on the space spanned by |1 ),
|4 1). The conserved quantity is N =), 7. We consider
two separate classes of initial product states: (i) random
eigenstates of N (i.e., random binary strings) and (ii) ran-
dom product states that are superpositions of different N
sectors. The results are shown in Fig. 3.

For (i) states that are initially random binary strings, the
Schmidt decomposition is block diagonal. Each partition of
N into N, “particles” in the subinterval has N — N4 particles
in the complement, so p, has no coherence between states
of different N 4. Different-N 4 blocks do not repel each other,
so the global level statistics are Poisson [Fig. 3(b)].
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FIG. 3. Random unitary circuits with a single conservation law.

(a) Evolution of the ESFF in the conserving case for an initial
state with definite particle number, at L = 16, [, = 6, averaged
over 600 samples. Note the appearance of ramp-plateau structure
despite the Poisson level statistics in (b). (b) Level statistics
parameter r for the conserving circuit with fixed- and variable-
number initial states, which, respectively, approach Poisson and
random-matrix behavior (dashed lines show the exact distribu-
tions [34] of the r ratio for Poisson and GUE distributions,
respectively).

Nevertheless, level repulsion persists within each individual
block, and yields a ramp-plateau structure in the ESFF
[Fig. 3(a)]. The ESFF is sensitive to level repulsion effects
beyond nearest-neighbor levels and, therefore, is able to
detect intrablock structure, unlike the adjacent gap ratio.

For random product states (ii), the behavior is qualita-
tively similar to that of random circuits, although there are
quantitative differences in entanglement growth rates [24].
Again, GUE level statistics emerge on a fixed size-
independent timescale when the bond dimension of p, is
still growing [24]. The entanglement DOS behaves quali-
tatively as in the Haar random unitary circuit model,
although its bandwidth grows even wider for conserving
dynamics. One might have expected level repulsion in the
entanglement spectrum to signal chaos in the underlying
dynamics; from this perspective, the irrelevance of the
conservation law is unexpected. We observe that this
feature persists even in dynamics that are not chaotic but
localized [24]. To summarize, for random product states,
the presence of a conservation law has no qualitative effect
on the evolution of the entanglement spectrum. Only
when the initial states are also eigenstates of the conserved
charge does one see qualitatively different evolution in the
entanglement spectrum.

Ising model with transverse and longitudinal fields.—To
test the generality of our results, we now turn to Hamiltonian
dynamics. We consider the nonintegrable Ising Hamiltonian
[Eq. (2)] and time evolve a random product state. We
consider the total system L = 16 with the subsystem size
I, = 8. We observe the same scale-free 1/f probability
distribution of the eigenvalues of the reduced density matrix
[24] [Fig. 1(a)] and find that the adjacent gap ratio [Fig. 1(b)]
approaches the GUE value on a o( 1) time scale, independent
of subsystem size [24]. In addition, we find the entanglement
bandwidth grows for times ¢ < I, /2 and then shrinks at late
times. Distinct from RUCs, the entanglement bandwidth
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FIG. 4. Dependence on the local Hilbert space ¢g. (a) Entangle-
ment DOS at a fixed time, r = 2, as a function of local Hilbert
space dimension g. The shape of the DOS does not seem to
change much with ¢, though the average entanglement energy
goes down as one might expect. (b) Adjacent gap ratio r vs g ata
fixed time r = 1 and ¢ = 2, these are the only times at which there
are appreciable deviations from GUE level statistics for g > 2
(the dashed line marks the exact GUE value r ~ 0.599).

starts from a nonzero initial value because the RDM is full
rank for Hamiltonian dynamics (since the light cone set by
the Lieb-Robinson bounds is not strict but has exponential
tails). Last, the entanglement bandwidth shrinks well before
the entropy saturates [Fig. 1(d)]. This case evidently behaves
like the previous ones.

Dependence on local Hilbert space.—Next, we compare
our results for different dimensions of local Hilbert space
q > 2, focusing on purely random circuits. Surprisingly,
the entanglement DOS stays broad for all the ¢ we have
considered [Fig. 4(a)]; despite the expectation that this
quantity narrows as g — oo [8,23], we see no clear sign of
narrowing. Thus, the approach to the known ¢ — oo
behavior is slow and possibly singular. Turning to the
gap ratio r, we find [Fig. 4(b)] that, for ¢ > 6, one has GUE
statistics in the entanglement spectrum for + = 1. Thus, at
large ¢, the onset of level repulsion in the entanglement
spectrum is essentially instantaneous.

Discussion.—Our results can be qualitatively understood
[35] invoking operator spreading [9,36-38], as follows: one
can expand the reduced density matrix in a basis of strings
of Pauli matrices, and study the evolution of these strings in
the Heisenberg picture. Strings initially localized on either
side of the cut spread out, under time evolution, to more
complicated operators that straddle the cut. Under the
partial trace, most such operators vanish. While the unitary
evolution of strings is rank-preserving, the partial trace
“dephases” components of the reduced density matrix and,
thereby, increases its rank. Heuristically, operators with a
given amplitude, when traced out, generate entries of that
amplitude in the reduced density matrix. At early times, the
density matrix is low rank, so adding a new entry of some
size almost always creates a new eigenvalue of the same
size. This picture qualitatively captures the entanglement
DOS and level statistics. In RUCs, the speed of the strict
causal light cone (v; - = 2) exceeds the butterfly velocity
v at which generic operators spread. Thus, terms that
extend beyond the operator front but within the causal
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light-cone get generated with small amplitude; those closest
to the light cone are generated at time ¢ with amplitude
exp{—[t(vic — vg)]?/(Dt)} [9,10,39], where D is the
rate at which the front broadens. These exponentially
small-amplitude operators generate correspondingly small
eigenvalues in the reduced density matrix, leading to
entanglement energies that grow linearly in ¢ and, thus,
accounting for the observed linear bandwidth expansion.
Once the light-cone hits the edge of the subsystem, the
density matrix is full rank, and tracing out further operators
cannot create new eigenvalues but, instead, redistributes
weight among existing eigenvalues, causing the spectrum
to narrow. The entanglement level statistics can be under-
stood in similar terms: operators that contribute nonzero
Schmidt coefficients are those that have crossed the
entanglement cut; by virtue of this property, they all have
overlapping support and are in causal contact. Therefore, it
is natural for the corresponding eigenvalues to have the
statistics described by the random matrix theory [40].
Although we presented this argument for RUCs, it can
straightforwardly be adapted to Hamiltonian dynamics.
The density of states and level statistics of the entanglement
spectrum behave qualitatively the same as with RUCs. The
main difference is that the reduced density matrix is always
full rank, so S, is not meaningful. However, if one
“regularizes” S, to include only eigenvalues above a certain
threshold (that is well above numerical precision), the
resulting evolution is qualitatively the same as in RUCs.
These results imply that the approach to full local
equilibrium involves multiple stages, which the entangle-
ment spectrum can distinguish. In principle, this can be
experimentally tested by measuring Rényi entropies [41];
however, since the local RDM is nonthermal, local correla-
tion functions exist that also diagnose this structure.
Detecting scalable signatures of multiple-stage relaxation
and of the nonthermal, universal entanglement structure in
this intermediate regime is an important task for future work.
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