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We examine when it is possible to locally extract energy from a bipartite quantum system in the presence
of strong coupling and entanglement, a task which is expected to be restricted by entanglement in the low-
energy eigenstates. We fully characterize this distinct notion of “passivity” by finding necessary and
sufficient conditions for such extraction to be impossible, using techniques from semidefinite programing.
This is the first time in which such techniques are used in the context of energy extraction, which opens a
way of exploring further kinds of passivity in quantum thermodynamics. We also significantly strengthen a
previous result of Frey et al., by showing a physically relevant quantitative bound on the threshold
temperature at which this passivity appears. Furthermore, we show how this no-go result also holds for
thermal states in the thermodynamic limit, provided that the spatial correlations decay sufficiently fast, and
we give numerical examples.
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Introduction.—In the macroscopic regime, in which
thermodynamic systems typically exchange energy via
weak interactions, the possible flows of energy between
them are easily understood in terms of the usual laws of
thermodynamics. These laws, however, may become less
relevant for systems where the fluctuations and the parti-
culars of the interaction between the microconstituents are
important. Moreover, in the microscopic regime, quantum
effects due to, e.g., coherence or entanglement appear, and
a natural question arises: how do those effects alter the
flows of energy in and out of the system?
For the task of extracting energy locally from a bipartite

system, one could expect the following: if the low-energy
eigenstates of the system display entanglement, there are
limitations when trying to get closer to them only by means
of local maps (since one cannot approach entangled states
with local operations). While it could be possible to
decrease the energy of the system up to some mixture of
those low-energy eigenstates, trying to drive the system to a
lower energy state can correspond to increasing the
correlations in the system beyond what is possible via
local operations alone.
Inspired by this intuition, here we focus on the problem

of cooling interacting multipartite systems to which only
local access to a single subsystem is granted. We explore
the most general type of local access to quantum systems,
which is given by the completely positive trace-preserving
(CPTP) maps [1], making our results relevant for any

physical platform in which the subsystems are spatially
separated.
This problem was first studied in Frey et al. [2], who

gave a set of sufficient conditions for the impossibility of
energy-yielding via arbitrary local operations. They called
this phenomenon strong local passivity (which we refer to
here as CP-local passivity) and showed that having a
nondegenerate ground state with full Schmidt rank is a
sufficient condition for the system to exhibit it, given a large
enough population in the ground state. Here, we build
on their results in two ways: (i) we find necessary and
sufficient conditions for this energy extraction to be
impossible and (ii) we strengthen the set of physically
motivated sufficient conditions found in [2], by finding
explicit bounds for the ground state population and critical
temperature for which the system displays CP-local passi-
vity. We also prove that these sufficient conditions hold for
systems of arbitrary size provided that the spatial correla-
tions are weak, thus extending the presence of CP-local
passivity to strongly coupled heat baths in the thermody-
namic limit. Furthermore, we highlight the relevance of the
necessary and sufficient conditions we find by constructing
examples where none of the sufficient conditions are met.
We also show that this effect of CP-local passivity,

unlike the usual notion of passivity, should only be of
fundamental relevance in quantum scenarios. In states
without coherence or entanglement, it can only happen
if the support of the states is fine-tuned and/or the
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Hamiltonian is sufficiently degenerate, which constitute
very strong restrictions.
Setting.—Let HA ⊗ HB be the Hilbert space associated

with quantum systems A and B, with global Hamiltonian
HAB. Given a state ρAB, the maximum extractable energy
under a local map on A is

ΔEðAÞB ¼ min
EA

ΔEEA
ðAÞB

≔ min
EA

Tr½HABðEA ⊗ IBÞρAB� − Tr½HABρAB�; ð1Þ

where IB is the identity channel on B, and the optimization
is over the whole set of CPTP maps on A. The above
optimization can be easily written as a “semidefinite
program” (see [3,4] for introductory references to the
subject). Therefore, it is very practical to calculate
ΔEðAÞB and to find the CPTP map that minimizes the
energy. Moreover, we see that energy cannot be extracted
when this quantity is zero, which motivates the following
definition.
Definition 1.—CP-local passivity: The pair fρAB;HABg

is CP-local passive with respect to subsystem A if and
only if

ΔEðAÞB ¼ ΔEIA
ðAÞB ¼ 0: ð2Þ

That is, a system is CP-local passive if the best local
strategy for extracting energy (as measured by the global
Hamiltonian HAB) is to act trivially on it. The word
“passive” is used here in analogy to the commonly known
passive states [5], from which energy cannot be extracted
under unitary maps. Throughout, we assume that the time
evolution given by the Hamiltonian HAB does not play a
role. This means that this setting applies to situations in
which the local actions happen quickly, in the same spirit as
that of fast local quenches or pulses in other quantum-
thermodynamic settings [6,7].
Let us now outline how this might be possible. First, let

us rewrite the term corresponding to the average energy of
the system after applying a local map, as follows:

Tr½HABðEA ⊗ IBÞρAB� ¼ Tr½CAA0EAA0 �; ð3Þ

where EAA0 is the Choi-Jamiołkowski operator for an
arbitrary channel EA∶A → A0, and CAA0 ∈ HA ⊗ HA0 the
Hermitian operator CAA0 ≡ TrB½ρΓA

ABHA0B�, with ρΓA
AB the

partial transpose on A [8].
Let us now assume that CP-local passivity holds, such

that for all EAA0 the energy of the system does not decrease
after the local action

Tr½CAA0EAA0 � ≥ Tr½HABρAB�; ð4Þ

We can rewrite the right-hand side, using the fact that EAA0

satisfies TrA0 ½EAA0 � ¼ IA, and defining dAjΦihΦj as the
Choi-Jamiołkowski operator for the identity channel as

Tr½HABρAB� ¼ Tr½dAjΦihΦjCAA0 �
¼ TrA½TrA0 ½dAjΦihΦjCAA0 �TrA0 ½EAA0 ��
¼ Tr½ðTrA0 ½dAjΦihΦjCAA0 � ⊗ IA0 ÞEAA0 �: ð5Þ

Since this holds for all EAA0 , this suggests that CP-local
passivity will hold whenever the following operator
inequality is true:

CAA0 ≥ TrA0 ½dAjΦihΦjCAA0 � ⊗ IA0 : ð6Þ

Complete conditions.—The previous inequality in fact
gives the necessary and sufficient condition. This consti-
tutes our first main result.
Theorem 1.—The pair fρAB;HABg is CP-local passive

with respect to subsystemA if andonly if TrA0 ½dAjΦihΦjCAA0 �
is Hermitian and

CAA0 − TrA0 ½dAjΦihΦjCAA0 � ⊗ IA0 ≥ 0; ð7Þ

whereHA0 is a copy of the Hilbert spaceHA, CAA0 ∈ HA ⊗
HA0 is a Hermitian operator defined asCAA0 ≡ TrB½ρΓA

ABHA0B�,
with ρΓA

AB as the partial transpose on A, and dAjΦihΦj is the
(maximally entangled) Choi-Jamiołkowski operator of the
identity channel.
Notice that Eq. (7) only depends on ρAB and HAB

through the operator CAA0. In fact, Eq. (3) guarantees that
this operator contains all the information about how much
energy can be extracted through local operations. Once it is
constructed, the operator inequality can be easily checked
to find whether the pair fρAB;HABg is CP-local passive or
not. If it is not, the semidefinite program can be solved to
find the amount of energy that can be extracted, as well as
the minimizing CPTP map. The proof can be found in the
Supplemental Material [9], together with details on semi-
definite programing duality theory, which we use in a
similar manner as in the proof of the Holevo-Yuen-
Kennedy-Lax conditions for quantum state discrimination
[10–13].
On top of this characterization, we show that the

condition of Theorem 1 is robust to errors, by using a
recent result concerning convex channel optimization
problems [14]. Roughly, if the operator on the lhs of
Eq. (7) has the smallest eigenvalue −ε ≤ 0, then the amount
of energy that can be extracted is bounded as
ΔEðAÞB ≥ −εdA. We give the precise statement and the
proof in the Supplemental Material [9].
Sufficient conditions.—The condition of Theorem 1, even

though it is simple to verify, makes no direct reference to
physical properties of the pair fρAB;HABg. It is important,
however, to find physically relevant situations in which CP-
local passivity holds. To that end, we derive sufficient
conditions for steady states ρAB ¼ PdA×dB−1

i¼0 pijEiihEij of
Hamiltonians HAB ¼ PdA×dB−1

i¼0 EijEiihEij of full Schmidt
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rank with a nondegenerate ground state. Steady states are
always trivially CP-local passive for p0 ¼ 1, and Frey et al.
[2] found qualitative conditions under which there exists a
threshold ground state population p� such that the pair
fρAB;HABg remains CP-local passive for all p0 ≥ p�. Here,
we provide explicit upper bounds on p� in terms of ground
state entanglement and the energy gap with the first
excited state.
Theorem 2.—Threshold ground state population: Let the

ground state jE0i of the HamiltonianHAB be nondegenerate
and with full Schmidt rank. All pairs fρAB;HABg with
ρAB ¼ P

i pijEiihEij and p0 ≥ p� are CP-local passive
with respect to A, with the threshold ground state popu-
lation bounded from above by

p� ≤
�
1þ E1ðqAB0;minÞ2

maxi≥1½EiðqABi;maxÞ2�
�−1

; ð8Þ

where fqABi;α gdA−1α¼0 denotes the Schmidt coefficients of jEii
and qABi;min ≡minα½qABi;α �, qABi;max ≡maxα½qABi;α �.
See the Supplemental Material [9] for the proof and an

example illustrating the tightness of the bound. The idea
behind it is that, if the ground state population is high
enough, the energetic changes caused by any CPTP map
will be dominated by the energy gained by exciting the
ground state into higher energy levels, making the total
change non-negative.
For thermal states, this result implies that, if the ground

state has full Schmidt rank, there exists a threshold temper-
ature T� > 0 below which CP-local passivity holds
(note that, if T ¼ 0, CP-local passivity holds trivially).
Moreover, this threshold temperature is such that

hHiβ� ≥ E1p0ðqAB0;minÞ2; ð9Þ

where hHiβ� is the average energy in the thermal state of
inverse temperature β�.
We now describe when we expect this bound to be of

importance. An entangled state of full Schmidt rank is
typical in first-neighbor interactions where the local
Hamiltonians do not commute with the interaction ones.
However, given that qABi;min ≤ 1=dA, the bound weakens as
the size of A grows (and it trivializes once dA > dB). Also, a
unique ground state and a finite energy gap is needed. On
top of that, frustration is required, as we show in the
following. Let us rewrite the Hamiltonian as HAB ¼ HAþ
HB þ VAB. The “frustration energy” of HAB is defined as

Ef ≡ EHAB
0 − EHAþHB

0 − EVAB
0 ; ð10Þ

where EH
0 is the ground state energy of Hamiltonian H.

This quantity measures the degree of frustration of HAB
with respect to a particular decomposition into local and
interaction terms ofHAB. The main result of [15] then states
that

Ef

maxi∈fA;BgEi
1

≥ 1 − qAB0;max ≥ ðdA − 1ÞqAB0;min; ð11Þ

where Ei
1 is the gap of the local Hamiltonian Hi. This

shows precisely that a certain level of frustration is
necessary to have entanglement (in particular, with full
Schmidt rank) in a unique ground state.
Note, however, that while these conditions are sufficient,

they are by no means necessary. In fact, we provide simple
examples of pairs that are CP-local passive but in which
(i) the ground state is not entangled, (ii) the ground state is
degenerate, and (iii) the state is not diagonal in the energy
eigenbasis. These can be found in the Supplemental
Material [9].
Thermodynamic limit.—The bound in Eq. (8) trivializes

when the system B becomes very large, as the energy Ei
grows with it. However, we show that for thermal states
with weak spatial correlations, one can increase the size of
system B indefinitely without breaking CP-local passivity.
Hence, this phenomenon can hold even in the thermo-
dynamic limit. First, we need the following definition.
Definition 2.—Clustering of correlations: A state ρ on a

finite square lattice ZD has ϵðlÞ clustering of correlations if

maxM;N jTr½M ⊗ Nρ� − Tr½Mρ�Tr½Nρ�j ≤ jjMjjjjNjjϵðlÞ;
ð12Þ

where the operator M has support on region A and N on
region B, and l ≤ distðA;BÞ, with distðA; BÞ as the
Euclidean distance on the lattice.
For a state ρ with ϵðlÞ clustering of correlations, it is

reasonable to expect that CP-local passivity is only
determined by the vicinity of the region in which we
act. We make this intuition precise in the following result.
Let HAB be a Hamiltonian on regions A, B in a d-
dimensional finite square lattice. Let B1, B2 be any splitting
of B (see Fig. 1), with l≡ distðA; B2Þ as the distance over
which B1 shields A from B2, with a boundary between B1,
B2 of size j∂B2j. More precisely, HAB takes the form

FIG. 1. Regions on the lattice for Theorem 3. The map acts on a
region S ⊂ A, which is shielded from the region B2 by B1, by a
distance of l. The boundary of the lattice between B1 and B2 is
defined as ∂B2 and has a number of sites j∂B2j.
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HAB ¼ HA þ VAB1
þHB1

þ VB1B2
þHB2

: ð13Þ

We shall denote HAB1
≡HA þ VAB1

þHB1
, and define

EAB1

i ; qAB1

i;α as the eigenvalues and Schmidt coefficients of
HAB1

. Let region S ⊆ A be such that no site in S interacts
with any site outside of the region A underHAB (see Fig. 1).
The result is as follows.
Theorem 3.—Consider a HamiltonianHAB as in Eq. (13)

and let τβAB ¼ e−βHAB=ZAB be its thermal state with ϵðlÞ
clustering of correlations. There exists a finite temperature
β� such that all pairs fτβAB;HABg with β ≥ β� are CP-local
passive with respect to local operations on S if the regions
B1, B2 can be chosen such that

EAB1

1 ðqAB1

0;minÞ2 > λðlÞ; ð14Þ

where

λðlÞ ¼ Kd2AjjHAjjj∂B2jðϵðl=2Þ þ c1e−c2lÞ: ð15Þ

Moreover, β� is such that

Tr½e−β�HAB1 �−1 ≤
�
1þ λðlÞ

maxi≥1½EAB1

i ðqAB1

i;maxÞ2�

�

×

�
1þ EAB1

1 ðqAB1

0;minÞ2
maxi≥1½EAB1

i ðqAB1

i;maxÞ2�

�−1

; ð16Þ

where K; c1; c2 > 0 are constants.
The proof can be found in the Supplemental Material [9].

It relies on a result from [16] (which builds on [17]), which
shows how clustering of correlations implies that the
marginals of many-body thermal states can be efficiently
estimated by looking only at subregions of the lattice.
Crucially, the bound on β� in Eq. (16) only depends on
parameters of the Hamiltonian HAB1

and on λðlÞ and is
independent of B2 (in particular, on its size) except for the
boundary factor j∂B2j ∼ lD−1, with D as the dimension of
the lattice. Hence, the best possible bound on β� for an
arbitrary system size is achieved by choosing a partition
AB1B2 such that the marginals on A of τAB and τAB1

are
close enough, and the size of AB1 is not too large to render
the bound useless.
A choice of regions (or rather, the choice of l) giving a

nontrivial bound is possible provided that the correlations
of the thermal state decay fast enough. More concretely, as
long as we can find an l such that Eq. (14) holds, the upper
bound on p� of Eq. (16) is nontrivial. We expect this to be
possible in a large class of models, as the gap rarely closes
faster than polynomially with system size (if at all), and
having an exponentially decaying ϵðlÞ clustering of corre-
lations at finite temperature is a property of many lattice
models [18–20]. In Fig. 2, we provide a numerical example
of a model in which we calculate how the threshold

temperature changes as we increase the system size.
Note that the curves converge as N becomes large, showing
that larger system sizes do not affect the threshold temper-
ature appreciably.
Classical CP-local passivity.—This phenomenon can

appear in certain classical situations (for instance, when the
Hamiltonian is noninteracting and the initial state is
ρAB ¼ j0ih0j ⊗ ρB), but we argue that either coherence
or entanglement are necessary for it to be nontrivial. We do
this by showing that CP-local passivity, in a classical
setting, only happens in very restricted situations. Let us
consider a fully classical model, with an incoherent state
ρAB and a Hamiltonian with product eigenstates, such that

HAB ¼
X
i;j

Ei;jjiihij ⊗ jjihjj; ð17Þ

ρAB ¼
X
i;j

pi;jjiihij ⊗ jjihjj: ð18Þ

Without loss of generality, we can order the energies such
that Ei;j ≤ Eiþ1;j and Ei;j ≤ Ei;jþ1. The optimal local
cooling strategy is straightforward: map the initial eigen-
states to the eigenstates of lower energy that can be
accessed with local maps. Let us write

ΔEEA
ðAÞB ¼ Tr½HABðEA ⊗ IBÞρAB� − Tr½HABρAB�

¼
X
i;k

X
j

Eij

X
l

pklδj;lhijEAðjkihkjÞjii − δi;k

≡X
i;k

Ẽi;kðhijEAðjkihkjÞjii − δi;kÞ; ð19Þ

where Ẽi;k ¼
P

j Ei;jpk;j. The optimal CPTP map is such

that Eopt
A ðjkihkjÞ ¼ ji�kihi�kj∀ k, where i�k ¼ argminiẼi;k, and

thus

FIG. 2. Threshold temperature for the 1D Hamiltonian

HAB¼
P

N
l¼1σ

ðlÞ
Z þκf½ð1þ γÞ=2�σðlÞX σðlþ1Þ

X þ½ð1− γÞ=2�σðlÞY σðlþ1Þ
Y g

as a function of the coupling strength κ, fixing the anisotropy
parameter γ ¼ 0.7. The system A on which the maps act is the
leftmost qubit l ¼ 1. For N > 3 the curves overlap, showing that
increasing system B beyond a certain size does not affect the
threshold temperature appreciably. The threshold temperature was
determined using the condition of Theorem 1.
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ΔEðAÞB ¼ ΔEEoptA
ðAÞB ¼

X
k

Ẽi�k;k
− Ẽk;k; ð20Þ

which is non-negative if and only if i�k ¼ k ∀ k, in which
case fρAB;HABg is CP-local passive. This happens only if
the matrix Ẽi;k is such that the smallest number in each row
(indexed by k) is in the diagonal. This condition, however,
can only be met by states with a particular support or by
highly degenerate Hamiltonians. To be more precise, let us
look at the individual terms of Eq. (20) for every k > 1,

Ẽk−1;k − Ẽk;k ¼
X
j

ðEk−1;j − Ek;jÞpk;j: ð21Þ

Since Ek−1;j − Ek;j ≤ 0 by definition, the only way Eq. (21)
can be non-negative is if either pk;j ¼ 0 or Ek−1;j ¼
Ek;j ∀ j, which constitutes a strong restriction on the
support of the initial state and HAB. For instance, no
thermal state (with full support) of a Hamiltonian with
any nondegeneracy on index k will obey this condition.
Discussion.—We have found necessary and sufficient

conditions for CP-local passivity, which take the form of a
simple inequality of operators of size dA × dA. We also
derived simpler sufficient conditions that show definite
physical situations in which this phenomenon appears, and
we provide numerical examples illustrating the general
picture.
Our proof of the necessary and sufficient conditions, of

Theorem 1, uses tools from the theory of convex optimi-
zation, widely used in quantum information, but which,
apart from a few exceptions [21,22], have not yet been
exploited in quantum-thermodynamic contexts. In fact, this
is, to our knowledge, the first time that the theory of
semidefinite programing has been used in the context of
energy extraction and passivity. We expect these tools to be
of further use in similar situations in which the actions
allowed on the state are limited in different physically
motivated ways. The fact that we optimize over a linear
function of the channels (the energy of the output) made the
derivations particularly simple, but, in fact, recent results
[14] easily allow for extensions to arbitrary nonlinear
functions.
A further set of previous results (e.g., [23–25]) identify

entanglement in the initial state as a useful resource in
energy extraction when one has access to global operations
and the Hamiltonians are noninteracting. Here we explore a
different side of the general picture, by showing that
entanglement in the eigenstates can forbid the possibility
of energy extraction via local operations when the inter-
actions are strong.
The underlying principle here is that entanglement in the

low-energy eigenstates causes a fundamental lack of local
control in systems at low temperature, provided that the
CPTP maps are fast compared to the dynamics of the
system. This effect could potentially also include quenches

and/or pulses that are commonly taken as the steps of
quantum thermal cycles in which “work” is exchanged
[6,7,26,27], in which case our results should put constraints
on their regime in which those machines can perform.
A further study on CP-local passivity could be the

characterization of scenarios in which this passivity can be
circumvented by allowing classical communication. This
type of setting goes under the name of quantum energy
teleportation (QET) [28–30]. Our necessary and sufficient
conditions could help design better QET-based protocols,
which have been applied both in quantum field theory [31]
and algorithmic cooling in quantum information process-
ing [32].
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