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Recent advances on quantum computing hardware have pushed quantum computing to the verge of
quantum supremacy. Here, we bring together many-body quantum physics and quantum computing by
using a method for strongly interacting two-dimensional systems, the projected entangled-pair states, to
realize an effective general-purpose simulator of quantum algorithms. The classical computing complexity
of this simulator is directly related to the entanglement generation of the underlying quantum circuit rather
than the number of qubits or gate operations. We apply our method to study random quantum circuits,
which allows us to quantify precisely the memory usage and the time requirements of random quantum
circuits. We demonstrate our method by computing one amplitude for a 7 × 7 lattice of qubits with depth
(1þ 40þ 1) on the Tianhe-2 supercomputer.
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Quantum computers offer the promise of efficiently
solving certain problems that are intractable for classical
computers, most famously factorizing large numbers [1–3].
With the rapid progress of various quantum systems
towards noisy intermediate-scale quantum computing devi-
ces [4–11], we are now on the verge of quantum supremacy
[12], i.e., demonstrating that a quantum computer has the
ability to do a computation that no classical computers can
tackle, an important milestone in the field of computer
science. Various candidates have been suggested to dem-
onstrate quantum supremacy, such as boson sampling
[13,14], the instantaneous quantum polynomial protocol
[15,16], and random quantum circuits (RQCs) [3,17] which
demand less physical resources and are easier to implement
compared to, for instance, factorization.

A central aspect for all these near-term supremacy proof-
of-principle computations is to produce a quantum state
using as fewer number of qubits as well as quantum gate
operations as possible, which would nevertheless be highly
entangled and hence difficult to obtain and/or characterize
by a classical computer, for instance by sampling from it in
the computational basis. In the meanwhile, it is important to
find effective ways to simulate accurately quantum algo-
rithms on classical computers, which could be used as a
benchmarking baseline and to validate near-term quantum
devices. In the field of quantummany-body physics, tensor-
network states are often used to efficiently represent
quantum states with a sizable amount of entanglement
[18,19]. The storage required by these tensor-network states
is closely related to the amount of entanglement of the
quantum state. Recently, matrix product states (which are
one-dimensional tensor networks) have been applied to
simulate quantum circuits [20]. However, the performance
of matrix product states is much less effective if the under-
lying quantum system is essentially two dimensional. In this
work, we present an efficient and generic quantum circuit
simulator based on the projected entangled-pair states
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(PEPS) [19,21–28], a type of tensor-network quantum states
representation designed for two-dimensional lattices. Our
PEPS-based simulator is a general-purpose quantum circuit
simulator for arbitrary quantum circuits: it stores the full
quantum state and it can be readily used to compute single
amplitudes, observables, and also perform sequences of
quantum measurements.
While the quantum circuit simulator we present can

tackle generic circuits, in the following we focus on RQCs.
They consist of a series of single and two-qubit gates which
are applied to different qubits in a particular order. A group
of commuting gates, which can be applied simultaneously,
constitutes one layer of the circuit, and the more groups of
operations that do not commute, the deeper the circuit is.
More precisely, for the depth of a circuit we will use the
notation (1þ dþ 1) where the “1”s indicate the Hadamard
gates applied to each site at the beginning and at the end of
the calculations, while d is the number of noncommuting
layers including controlled-Z (CZ) gates and single-
qubit gates applied to different sites. RQCs are the standard
benchmark for quantum supremacy as put forth by [3].
The general complexity of quantum supremacy experi-
ments is studied in [29]. For RQCs, it was previously
shown in [30] that the complexity scales exponentially
with min (OðdLhÞ; OðNÞ).
RQCs have thus stimulated the search for efficient

classical algorithms which would show where exactly
the limits of classical simulations are [17,30–38]. State of
the art algorithms can bemainly divided into two categories.
(i) The state-vector approach which stores the quantum
state as a vector and evolves it directly. For example, in [31] a
45-qubit simulation is reported based on this approach.
However, this approach is limited by the number of qubits
due to the exponential growth of the Hilbert space. (ii) The
tensor-based approach, which represents the quantum states
as tensors and specifies the input and output states as rank-1
Kronecker projectors. This approach is less sensitive to the
number of qubits and has been pursued more actively. For
instance, a full amplitude simulation of a 7 × 7 circuit to
depth (1þ 39þ 1) was implemented in 4.2 h on Sunway
TaihuLight supercomputer [33], which, however, exploits
theweakness in the original design of RQCs in [3]. Recently,
it was proposed to trade circuit fidelity for computational
efficiency so as to match the fidelity of a given quantum
computer [36,37], and practically compute around 1 × 106

amplitudes of a 7 × 7 circuit to depth (1þ 40þ 1) with
0.5% circuit fidelity in 2.44 h on Summit supercomputer
[38]. Our approach differs from the above approaches in that
we use PEPS as the data structure to represent the quantum
states. Quantum gate operations as well as quantum pro-
jections are adapted accordingly to this new data structure.
Quantum circuit simulator Based on PEPS.—In the

following, we consider a two-dimensional rectangular
lattice of size Lv × Lh, where Lv and Lh are, respectively,
the sizes in the vertical and horizontal directions. We use

N ¼ LvLh to denote the total number of qubits. The
quantum state on such a lattice can be represented as a
PEPS [21,23,24]

jψi ¼
X

σ1;…;σN

F ðAσ1
1 Aσ2

2 � � �AσN
N Þjσ1; σ2;…; σNi; ð1Þ

whereAσn
n is a rank-5 tensor with elements ½Aσn

n �l;r;u;d at site
n, with σ ¼ 0, 1 corresponding to the physical dimension,
and l, r, u, d corresponding to the left, right, up, and down
auxiliary dimensions, see Fig. 1(a). The function F in
Eq. (1) indicates the sum over the common auxiliary
indices. The bond dimension χ is defined as the maximum
size of the four auxiliary dimensions,

χ ¼ maxfdimðlÞ; dimðrÞ; dimðuÞ; dimðdÞg; ð2Þ
and it characterizes the size of the PEPS.
In the language of PEPS, a single-qubit gate operation

Uτn
σn on site n only operates locally on the nth tensor Aσn

n

[shown in Fig. 1(b)], which can be written as

FIG. 1. (a) PEPS on a 5 × 5 lattice, each qubit of the lattice is
represented with a rank-5 tensor ½Aσn

n �l;r;u;d, where σn ¼ 0, 1
labels the physical dimension and l, r, u, d label the auxiliary
dimensions which connect ½Aσn

n �l;r;u;d to the tensors on the
neighboring sites. (b) Single-qubit gate operation on the PEPS.
(c) Two-qubit gate operation on PEPS. (d) Overlapping of two
PEPSs by contraction of all the physical dimensions of the two
PEPSs and all the auxiliary dimensions inside each PEPS.
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½A0τn
n �l;r;u;d ¼

X

σn

Uτn
σn ½Aσn

n �l;r;u;d: ð3Þ

As we can see from Eq. (3), the size of the local tensor is
not affected by a single-qubit gate operation. For a two-
qubit gate acting on a horizontally nearest-neighbor pair of
qubits (n, m) [shown in Fig. 1(c)], denoted as Oτn;τm

σn;σm , we
first use a singular value decomposition (SVD) to factorize
it into a product of two local tensors

SVDðOτn;τm
σn;σmÞ ¼

X

s

Uτn
σn;sV

τm
s;σm; ð4Þ

where the singular values have been absorbed into U. The
size of the auxiliary dimension s is denoted as χo, which,
for any two-qubit controlled gate, is χo ¼ 2. The two local
tensors U and V are then applied on the two qubits n andm
separately, as single-qubit gate operations

½A0τn
n �l;r0;u;d ¼

X

σn

Uτn
σn;s½Aσn

n �l;r;u;d; ð5Þ

½A0τm
m �l0;r;u;d ¼

X

σm

Vτm
s;σm ½Aσm

m �l;r;u;d: ð6Þ

Here, we have used the indices r0 ¼ ðr; sÞ, l0 ¼ ðs; lÞ,
which bundles the two tensor dimensions into one. As a
result, χ increases by a factor of χo. To keep χ in a
affordable size, one would usually use a subsequent
singular value decomposition to compress the resulting
tensors by throwing away singular values below a suitably
chosen threshold. However, we point out that for RQCs we
cannot perform such a compression because the distribu-
tion of the singular values after the two-qubit gate operation
is almost flat, making it impossible for compression (this is
also an indication that this problem has large entanglement
across the whole circuit). Calculating a single amplitude of
the final state jψi is done by projecting jψi onto a separable
PEPS which encodes one spin configuration jτ⃗i, and then
contracting the resulting tensor network, which can be
written as

hτ⃗jψi ¼ F ðE1E2 � � �ENÞ; ð7Þ

where the rank-4 tensor ½En�l;r;u;d ¼ ½Aσn¼τn
n �l;r;u;d. This

calculations are depicted in Fig. 1(d). To this end, we also
note that with our method it is also straightforward to
simulate sequences of quantum measurements. Concretely,
to measure an Nth qubit system, we can first compute the
probability that a qubit is in state j0i or j1i. Then, we use
another copy of the wave function (which is stored as
PEPS), project the measured qubit in the relevant state,
measure another qubit, and so forth. In between different
measurements more gates can be applied too, all seamlessly
because we can effectively and efficiently compute and
store the wave function of the system.

Application to random quantum circuits and complexity
analysis.—In the following, we apply our PEPS simulator
to study the two-dimensional RQCs of [39,40]. The
simulation of this circuit is divided into two parts: (i) circuit
evolution and (ii) computing the overlap with randomly
selected spin configurations, namely calculating the ampli-
tudes. To quantify the size of the bond dimension required
by the tensors, we realize that a single-qubit operation does
not affect the size of the tensor it operates on, while a
nearest-neighbor two-qubit controlled operation increases
the sizes of the two tensors it operates on by a factor of 2 as
shown previously [41]. This results in

χ ≤ 2⌈d=8⌉; ð8Þ

where ⌈…⌉ is the ceiling function. The equality in Eq. (8) is
reached if the depth d can be divided by 8 (each nearest-
neighbor pair of sites will be acted on by a CZ gate in every
8 depths). As can be seen from Eqs. (3), (5), (6), the cost of
each gate operation on PEPS scales as Oðχ4Þ, which is
relatively cheap. As a result, circuit evolution can be
performed very efficiently. In fact, we can simulate the
exact evolution of a 12 × 12 lattice to a depth (1þ 40þ 1)
within minutes on a personal laptop.
In contrast, a well-known result about PEPS is that

exactly computing the overlap as in Eq. (7) is an exponen-
tially hard problem [42]. While there exist approximate
algorithms to evaluate Eq. (7) which scale polynomially with
χ [22,25,26], they are inadequate for RQCs due to the large
entanglement of the states produced. In the following, we
ignore both the space and timecomplexity of circuit evolution
and only focus on calculating one amplitude, since the cost of
the former stage is negligible compared to the latter.
We have developed different strategies to evaluate

Eq. (7) efficiently, depending on the shape and size of
the lattice. A generic strategy which works for any
rectangular lattice has space and time complexities (assum-
ing Lv ≥ Lh) given by

CsðLv × Lh × dÞ ¼ 2⌈d=8⌉ðLhþ1Þ; ð9Þ

CtðLv × Lh × dÞ ¼ ðLh − 2ÞðLv − 2Þ2⌈d=8⌉ðLhþ3Þ: ð10Þ

For square lattices, specialized tensor contraction strategies
can be used to further reduce the complexity or for better
parallelization (see [40] for details of these strategies). We
highlight here that Eqs. (9) and (10) are more accurate
estimates for space and time complexities compared to the
results of [30], and the exact value will depend on the
details of the particular implementation on the hardware.
However, these numbers can work as a theoretical approxi-
mate benchmarking baseline for achieving quantum
supremacy.
To give more precise numbers, using Eqs. (9) and (10),

we can evaluate that simulating a 8 × 8 lattice to a depth
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(1þ 40þ 1) [same space complexity of a 10 × 10 circuit to
a depth (1þ 32þ 1)] would require 32 TB of memory,
while simulating a 8 × l (with l > 8) lattice to a depth
(1þ 40þ 1)would require about 0.5 PBmemory.However,
simulating a 9 × 9 lattice with a depth (1þ 40þ 1) would
require 16 PB (petabytes) memory and simulating a 12 × 12
lattice to a depth (1þ 32þ 1) would require 8 PB memory,
which are currently out of reach. Our circuit simulator
can straightforwardly be extended to other types of two-
dimensional lattices including Google Bristlecone QPU
architecture. By applying a complexity analysis to this
architecture, we find that it only requires less than a
manageable 0.6 PB of memory to simulate an RQC with
72 qubits at depth (1þ 32þ 1) (for details of this analysis
see [40]).
To demonstrate the performance of our method, we have

implemented small scale simulations on a personal com-
puter, which takes less than 1 h to compute one amplitude
of a 8 × 8 circuit to a depth (1þ 25þ 1) for a machine with
2 cores of 2.8 GHz frequency and 16 GB memory. We
computed 10 000 amplitudes then plotted the frequency
with which each probability of configurations appear. This
is represented in Fig. 2 by blue circles, while the red
continuous line shows the Porter-Thomas distribution,
which is what is expected theoretically.
Our PEPS-based method can be readily scaled up onto a

massive parallel computing platform. We implemented the
large-scale tensor contractions based on an open-source
software package Cyclops Tensor Framework [43]. The massive
parallel benchmarking was executed on the Tianhe-2
supercomputer [44]. We have simulated a 7 × 7 circuit
with depth (1þ 40þ 1) and a 10 × 10 circuit with depth

(1þ 26þ 1). The simulation of the 7 × 7 × ð1þ 40þ 1Þ
circuit was done on 4096 nodes (22%) of Tianhe-2, taking
31 min and 92.51 TB memory in total [40]. Our large-scale
simulation results are listed in Table I.
Conclusions.—In this work we have adapted the pro-

jected entangled-pair states representation of quantum
states from many-body quantum physics to build a gen-
eral-purpose quantum circuit simulator. This simulator can
be used to store effectively highly entangled wave functions,
and it is readily adaptable to compute expectation values or
simulate sequential quantummeasurements.With this circuit
simulator, we have computed an accurate estimate for the
space and time complexity analysis of a standard random
quantumcircuit [39]. Based on this analysis,wepoint out that
simulating an 8 × l circuit to a depth (1þ 40þ 1) or a
Bristlecone-72 circuit to a depth (1þ 32þ 1) are within
reach of current supercomputing platforms.
We have implemented numerical experiments on a per-

sonal computer with a 8 × 8 circuit to a depth (1þ 25þ 1),
and on Tianhe-2 supercomputer with a 10 × 10 circuit to a
depth (1þ 26þ 1), as well as a 7 × 7 circuit to a depth
(1þ 40þ 1). Currently, we compute the amplitudes exactly;
however, we could also investigate the trade-off between
fidelity and speed, so as to be able to sample many
trajectories. For instance, we could reduce the memory
requirement of our method by using the “cut” technique
in [38], namely mapping a large tensor contraction into
summations over many smaller tensor contractions by
unraveling several for-loops. More importantly, PEPS-based
techniques which are currently used in quantum many-body
physics can be transferred to the study of quantum circuits,
for example for contractions and the evaluation of expect-
ation values [45]. These investigations, which could be
particularly useful for circuits in which the wave function
can be effectively compressed, are left for future works,
together with the plan to include the effects of noise or errors
in order to characterize more closely the actual behavior of a
noisy intermediate-scale quantum computer.
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FIG. 2. The blue circles show the log transformed probabilities
from calculating 10 000 amplitudes, while the red line is the log
transformed Porter-Thomas distribution. The circuit size is 8 × 8
with a depth (1þ 25þ 1).

TABLE I. Large-scale simulation with PEPS-based circuit
simulator. The column denoted by “node usage” indicates the
number of computing nodes used divided by the total available on
Tianhe-2, and the corresponding percentage. “Qubits” and
“depth” describe the circuit analyzed while “elapsed time” shows
the time required to compute one amplitude.

Node usage Qubits Depth Elapsed time

4096=17920, 22%
7 × 7 (1þ 39þ 1) 9 min
7 × 7 (1þ 40þ 1) 31 min
8 × 8 (1þ 37þ 1) 68 min

2048=17920, 11% 9 × 9 (1þ 31þ 1) 22 min
1024=17920, 5% 10 × 10 (1þ 26þ 1) 9 min
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