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Many systems, including biological tissues and foams, are made of highly packed units having high
deformability but low compressibility. At two dimensions, these systems offer natural tesselations of a plane
with fixed density, in which transitions from ordered to disordered patterns are often observed, in both
directions. Using a modified cellular Potts model algorithm that allows rapid thermalization of extensive
systems, we numerically explore the order-disorder transition of monodisperse, two-dimensional cellular
systems driven by thermal agitation. We show that the transition follows most of the predictions of Kosterlitz-
Thouless-Halperin-Nelson-Young (KTHNY) theory developed for melting of 2D solids, extending the
validity of this theory to systems with many-body interactions. In particular, we show the existence of an
intermediate hexatic phase, which preserves the orientational order of the regular hexagonal tiling but loses its
positional order. In addition to shedding light on the structural changes observed in experimental systems, our
study shows that soft cellular systems offer macroscopic systems in which the KTHNY melting scenario can
be explored, in the continuation of Bragg’s experiments on bubble rafts.
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Foams, emulsions, and confluent biological tissues are
examples of soft Cellular systems (SCS): They are con-
stituted of highly deformable—yet almost incompressible—
units (bubbles, drops, cells, etc.), interacting through attrac-
tive adhesive interactions and soft steric repulsions. When
highly compacted, they tile the available space (3D) or plane
(2D) perfectly, i.e., without gaps or overlaps. Interface
energy is key to the cohesion and the rigidity of these
systems, sometimes constituted solely of fluids. SCS have
rough (mechanical) energy landscapes with many local
minima: For a given number of units (with prescribed sizes),
many different tilings are possible. In some cases the tiling
is ordered, consisting predominantly of hexagons (in 2D),
and in others it is disordered and includes a distribution of
topological defects (polygons with n ≠ 6 sides). On the
timescales considered here, the transition from one local
minimum to another is achieved through a succession of
elementary structural rearrangements, called T1 events [see
the inset in Fig. 1(a)], which preserve the integrity and size of
the cellular units [1].
Over the past years, special attention has been given

to the glass transition in these systems [2–6], i.e., in the
transition from a disordered, solid phase to a disordered,
liquid phase. In many situations, though—and especially
during morphogenetic movements—we observe a transi-
tion between ordered and disordered patterns, in both
directions [7–12]. Such order-disorder transitions received
little attention from a theoretical point of view [13].
In systems that are monodisperse in size, the structural
disorder is of topological origin only: For 2D SCS,
hexagonal tiling is the only monodisperse regular tiling,

and structural disorder arises from the presence of non-
hexagonal cells, or topological defects, that are generated
by T1 events. Structural disorder strongly affects the
mechanical properties of a tissue (or any other SCS) and
is also essential for its function. Eventually, the study of the
pattern of SCS or its fluctuations [14,15] can teach us about
its mechanical properties and provide a tool for diagnosis.
In the present Letter, we numerically investigate the

order-disorder phase transition in monodisperse 2D cellular
systems, using a modified cellular Potts model algorithm
that allows thermalization of large systems. Order-disorder
transition in SCS is usually driven by a nonthermal source
of energy: In a confluent tissue, T1’s are consequences
of cell activity powered with chemical energy (ATP). In
passive SCS such as foams or emulsions, T1’s are induced
by the injection of mechanical energy through the appli-
cation of some mechanical stress. Here, we modelize these
out-of-equilibrium dynamics by an effective simulation
temperature [14] and investigate the phase transition driven
by this effective thermal agitation. A thermally driven
transition will offer a benchmark system over which wewill
build up when comparing with actively driven transitions.
Since the pioneering Bragg’s experiments [16,17], foams
and bubble rafts have been recognized as macroscopic
model systems for studying the geometry, the dynamics,
and the deformation behavior of atomic or molecular
materials. We show in the present study that foams also
provide a macroscopic model for studying melting of two-
dimensional materials.
The order-disorder transition in 2D SCS is reminiscent of

defect-mediated theories for melting of two-dimensional
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solids. In these theories, the phase transition is described
in terms of topological defects in the Voronoi partition
associated with the lattice of the solids. Defect-mediated
melting theories have been tested, experimentally and
numerically, on a large variety of systems, including
Lennard-Jones systems [18], colloidal particles [19,20],
magnetic beads [21], and disks with either hard-core or soft
potentials [22]. SCS yet differ in different aspects from
all these classes of systems: First, the partition of 2D space
is a physical partition, not a mathematical construction
like Voronoi tesselation. Hence, energy and partition are
directly related. Second, due to their unique high-
deformability–low-compressibility feature, interactions
between the cellular units are not pairwise additive
[6,23,24]. Many-body interactions are known to affect
the mechanical properties of SCS [23]. They also make
the phase transition scenario uncertain.
The most popular defect-mediated melting scenario is

provided by the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY) theory [19,25,26], which predicts
two-step melting, from the crystal to an intermediate
hexatic phase and then from the hexatic to a liquid phase.

The two transitions are associated with the disappearance
of translational and orientational orders, successively.
The intermediate hexatic phase has short-range transla-
tional order but quasi-long-range orientational order. The
dissociation of bound dislocation pairs into free disloca-
tions drives the solid into the hexatic phase, while the
unbinding of dislocations into isolated disclinations drives
the hexatic to liquid transition. Other melting scenarios are,
however, possible. Those based on proliferation of vacan-
cies or interstitials [26] are irrelevant for SCS, in which
such defects cannot take place. Another popular scenario
argues that, for systems with a core energy of dislocations
not too large compared to kBT, melting is caused by the
nucleation and proliferation of grain boundaries, preempt-
ing the hexatic phase [27,28].
Our simulations are based on the cellular Potts model

(CPM), which is widely used for simulating cellular systems
in various fields of physics or biology, such as coarsening
and mechanics of foams [29,30], tissue morphogenesis [31],
cell sorting [32], and collective cell motion in epithelial
tissues [33,34]. The CPM is a lattice-based modeling
technique: Each cell is represented as a subset of lattice
sites sharing the same cell ID (analogical to spins in the Potts
model). Cellular domains can adopt any shape on the lattice.
The CPM is then particularly suited to simulate thermal
fluctuations of cellular systems, as it reproduces realistically
the fluctuations of interface locations, even for a wavelength
at the subcellular scale. Furthermore, its extension to three
dimensions is straightforward. The system evolves using a
recently modified Metropolis algorithm that preserves the
integrity of the cellular domains and satisfies the detailed
balance equation [35], ensuring that the probability distri-
bution of visited states converges to the Boltzmann distri-
bution. This algorithm has also been proved to be more
efficient than the standard algorithm used in CPM for the
same simulation temperature T [35], allowing us to simulate
much larger systems.
Mechanical energy of monodisperse SCS is modeled by

the discretized version of the following Hamiltonian:

H ¼ γ
X
hi;ji

Lij þ
B
2A0

X
i

ðAi − A0Þ2: ð1Þ

The first term in Eq. (1) accounts for interfacial effects: The
sum is carried over neighboring cells hi; ji, and Lij is the
boundary length between cells i and j. The second term
accounts for an effective area elasticity which results from a
combination of three-dimensional cell incompressibility and
cell bulk elasticity. B is the effective 2D bulk modulus, Ai is
the actual area of cell i, and A0 is the preferred cell area. This
simplified version of the standard Hamiltonian used for
cellular systems [5,6,13] corresponds to the situation of a
foam or an epithelium with inflated shapes [13,36].
We emphasize that the Hamiltonian (1) cannot be

expressed as a sum of pairwise interactions: Because
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FIG. 1. Evolution of defect populations and orientational order
with temperatures. Only a small portion of the system is shown.
Columns from left to right: solid, hexatic, and liquid phases. Top
row (a)–(c): Population of topological defects. Inset: Sketch of a
T1 event: In a hexagonal lattice, this topological change corre-
sponds to the creation of a bounded pair of dislocations. Middle
row (d)–(f): Phase of the local orientational parameter order
argψ6ðriÞ. Insets: Normalized histograms of argψ6ðriÞ, calcu-
lated over the whole simulation time. Bottom row (g)–(i):
Norm of the local orientational parameter order jψ6ðriÞj. Insets:
Normalized histograms jψ6ðriÞj, calculated over the whole
simulation time.
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cellular units have high deformability but low compress-
ibility, they adjust their shape rather than their size when
brought in contact. In a confluent system, any modification
of the interface between cells i and j will imply a
displacement of the two cell centers, but also of the other
neighboring cells in order to tile the plane perfectly, while
preserving cell areas. As a consequence, contact length Lij

depends not only on the relative position of the two
adjacent cells i and j, but also on the positions of other
neighboring cells [6,23,24].
The relative importance of thermal, interfacial, and bulk

energies are quantified with two dimensionless parameters:
the reduced temperature T⋆ ¼ T=ðγaÞ and the reduced
compressibility ξ ¼ γ=ðBaÞ, where a is the equivalent
hexagonal lattice step: a ¼ ð2A0=

ffiffiffi
3

p Þ1=2. ξ must be low
enough to reproduce accurately real systems but must
remain finite to allow for some area fluctuations required
by the Metropolis-like algorithm.
We have performed extensive numerical simulations of

systems of N ¼ 2002 ¼ 40 000 cells in a rectangular lattice
of 1400 × 1616 sites under periodic conditions (then
A0 ¼ 56.56 pixels2). Periodic boundary conditions allow
global translations of the lattice but forbid global rotations.
The lattice aspect ratio approximates the target value of
2=

ffiffiffi
3

p
, corresponding to the aspect ratio of a perfect

hexagonal lattice, with an error of less than 4 × 10−4%.
For all simulation runs, we start with the same ordered
hexagonal tiling (honeycomb) and wait for equilibration
before recording data (see [36] for details on the estimation
of equilibration time). In all our simulations, we choose
γ ¼ 180, B ¼ 200, and so ξ ≃ 0.11.
Figures 1(a)–1(c) show the equilibrated system at three

different temperatures, with nonhexagonal cells that are
color coded. At a low temperature [Fig. 1(a)], the only
topological defects are bound dislocation pairs. At an
intermediate temperature [Fig. 1(b)], paired and single
dislocations coexist. At a high temperature [Fig. 1(c)], most
of the topological defects are assembled into aggregates.
To characterize the static structure of the cellular system

occurring during 2D melting, we first calculate the pair
correlation function gðrÞ, defined as

gðrÞ ¼ 1

N

�X
j≠k

δðr − jrj − rkjÞ
�
; ð2Þ

where rj and rk are the geometric center positions of cells j
and k, respectively. The angular brackets denote an average
over central cell k. This correlation function gives the
probability to find two cells separated by a distance r.
Figure 2(a) shows that the peaks of gðrÞ get broader and
shorter as the temperature increases, indicating that the
system melts from an ordered crystal to a disordered liquid.
To get more insights into the structural change during the

melting process, we focus on the two order parameters

which characterize the translational and orientational sym-
metries of the system, respectively. The global translational
order parameter is defined by

Ψt ¼
1

N

XN
i¼1

ψ tðriÞ; ð3Þ

where ψ tðrÞ ¼ exp ðiG · rÞ is the local translational order
parameter for cell i at position ri and G is a primary
reciprocal lattice vector. The global orientational order
parameter is given by

Ψ6 ¼
1

N

XN
i¼1

ψ6ðriÞ; ð4Þ

where ψ6ðriÞ ¼ ð1=ziÞ
P

j∈zi exp ði6θijÞ is the local ori-
entational parameter order, zi is the number of neighbors of
cell i, and θij is the angle of the bond between centers of
cell i and j relative to a fixed reference axis. The magnitude
of the local orientational order, jψ6ðriÞj ranges from 0 to 1
and measures the degree to which the cell’s neighborhood
resembles a hexagonal crystal, while its phase argψ6ðriÞ
indicates the local lattice director.
Spatial distributions of argψ6ðriÞ and jψ6ðriÞj are shown

in Figs. 1(d)–1(i) at three different temperatures. Spatial
heterogeneities increase with the temperature. Normalized
histograms of jψ6ðriÞj and argψ6ðriÞ are shown in the
corresponding insets. Both quantities are clearly peaked
in the solid and intermediate phases, revealing that the
orientational order is preserved in these two phases. Peaks
are more spread out in the intermediate phase, indicating a
quasi-long orientational order in this phase, as expected for
the hexatic phase predicted by the KTHNY theory. In the
liquid phase, distributions are flat and the orientational
order is lost.
Figure 2(b) shows the variation of the global order

parameters jΨtj and jΨ6j with the temperature. Both curves

(a) (b)

FIG. 2. (a) Pair correlation function gðrÞ at different reduced
temperatures. Plots are evenly shifted vertically for clarity. Peaks
are smeared out as the temperature increases, indicating the loss
of translational order. (b) Variation of jΨtj and jΨ6j with the
temperature. The drop of jΨtj slightly precedes the jΨ6j drop,
indicating two distinct transitions. The shaded area indicates the
existence domain of the hexatic phase as determined from the
peaks of the two susceptibilities [see Fig. 4(a)]. Standard errors of
the mean are smaller than the size of the markers.
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present similar tendencies: At a low temperature, both order
parameters decay slowly with T. The decay is more
pronounced for jΨtj, suggesting a quasi-long-range orienta-
tional order in the solid phase. Then, both curves drop
abruptly to ≃0. jΨtj falls slightly before jΨ6j, suggesting
the existence of two distinct phase transitions and sub-
sequently the existence of an intermediate hexatic phase, in
agreement with the KTHNY scenario.
To further characterize the transition, we now analyze the

correlation functions of the two local order parameters, for
which specific behaviors are expected within the KTHNY
theory [19,25,26]. They are defined as

CkðrÞ ¼ jhψ�
kðr0 þ rÞψkðr0Þir0 j ð5Þ

with k≡ 6; t. In Fig. 3(a), CtðrÞ shows two different
decaying behaviors: For T⋆ ≲ 2.55 × 10−2, CtðrÞ decays
algebraically, which is a signature of a quasi-long-range
positional order, and is typical of a 2D solid phase. For
T⋆ ≳ 2.55 × 10−2, CtðrÞ decays exponentially, revealing a
short-range positional order. Near the transition between
the two regimes, the power-law exponent is close to −1=3,
in agreement with the prediction of the KTHNY theory.
In Fig. 3(b), C6ðrÞ exhibits three different behaviors: At

low temperatures (T⋆ ≲ 2.55 × 10−2), C6ðrÞ approaches
constants, and the system is in the solid phase with long-
range orientational order. At an intermediate temperature
(2.55 × 10−2 ≲ T⋆ ≲ 2.61 × 10−2), C6ðrÞ decays algebrai-
cally with an exponent close to −1=4, which agrees with
the prediction of the KTHNY theory and confirms the
existence of a hexatic phase. When the temperature is
further increased, C6ðrÞ decays exponentially and the
system becomes a liquid.
To determine more precisely the phase-transition points,

we plot the susceptibilities associated with the two order

parameters. Unlike correlation functions, the divergence
of susceptibility has been shown to be robust to finite-
size or finite-time effects. Figure 4(a) shows the variation
of the susceptibilities χk ¼ NðhjΨkj2i − hjΨkji2Þ with the
temperature.
Their sharp peaks clearly indicate two transitions in the

melting process. The peak for χt is centered at T⋆
m ¼

2.549 × 10−2, while the peak for χ6 is centered at
T⋆
i ¼ 2.609 × 10−2, confirming the existence of an inter-

mediate hexatic phase. It must be emphasized that the
values of T⋆

m and T⋆
i we find are specific to the value of

the reduced compressibility ξ chosen for our simulations.
The peak for χt is much higher than for χ6, suggesting
a continuous solid-hexatic transition and a first-order
hexatic-liquid transition. This modified KTHNY scenario
has also been observed for systems of hard disks [40].
The KTHNY theory relates the disappearance of trans-

lational and rotational orders to dislocations and disclina-
tions unbinding, respectively. To test this scenario, we
report in Fig. 5 the evolution of a population of defects with
the temperature. The detection and counting of the different
defects are detailed in Supplemental Material [36]. As
expected, T⋆

m coincides with the rapid increase of isolated
dislocations due to the dissociation of bound dislocation
pairs. On the other hand, the number of disclinations shows
a moderate increase around T⋆

i . In fact, although the
KTHNY scenario assumes that the defects remain diluted
during the melting process, in our systems the concen-
tration of defects is such that they form aggregates whose
number and mean size increase with the temperature. This
aggregation is a natural consequence of the attractive
interactions between defects. Aggregates with a nonzero
topological charge (i.e., containing unequal numbers of

(a) (b)

FIG. 3. (a) Translational correlation function CtðrÞ in a log-log
plot. The curve evolves from a power-law decay (pink area) to
an exponential decay as the temperature increases. The r−1=3

decaying behavior at the solid-hexatic transition is predicted by
the KTHNY theory. (b) Orientational correlation function C6ðrÞ
in a log-log plot. At low temperatures, the curves decay to a
plateau. At intermediate temperatures, curves follow a power-law
decay (gray area). At higher temperatures, the curves exhibit an
exponential decay. The r−1=4 decaying behavior at the hexatic-
liquid transition is predicted by the KTHNY theory.

FIG. 4. The susceptibilities χt and χ6 as a function of the
reduced temperature. The peaks of the translational susceptibility
χt and the orientational susceptibility χ6 clearly indicate two
transition points, at T⋆

m ¼ 2.549 × 10−2 and T⋆
i ¼ 2.609 × 10−2,

respectively.
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five-sided and seven-sided cells) participate as much as free
disclinations in the destruction of the orientational order
and, hence, must be accounted for. Figure 5 shows that the
population of charged aggregates (including disclinations)
increases significantly around T⋆

i , in good agreement with
the KTHNY scenario.
In summary, we used a recent CPM-modified algorithm

that allows for thermalization of large cellular systems and
showed that soft cellular systems follow closely the KTHNY
melting scenario, hence extending the validity of this theory
to systems with many-body interactions. We showed, in
particular, the existence of an intermediate hexatic phase.
Topological properties of SCS have been mainly charac-
terized by pðnÞ, the proportion of n-sided cells within the
system (and many times by the second moment of this
distribution solely). Our study shows that pðnÞ is often not
sufficient to capture the mechanical properties of the system,
as it can be in a solid, hexatic, or liquid phase. Spatial
correlations of defects must also be accounted for. We hope
our results will stimulate relevant experimental work to
test the existence of an intermediate phase in the order-
disorder transitions observed during morphogenetic move-
ments [10–12]. As the defect core energy is the vital
predictor of the melting mechanism between KTHNY and
grain-boundary scenarios, it would be valuable to quantify
the defect core energy of SCS in the future.
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