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We demonstrate theoretically how, by imposing epitaxial strain in a ferroelectric perovskite, it is possible
to achieve a dynamical control of phonon propagation by means of external electric fields, which yields a
giant electrophononic response, i.e., the dependence of the lattice thermal conductivity on external electric
fields. Specifically, we study the strain-induced manipulation of the lattice structure and analyze its
interplay with the electrophononic response. We show that tensile biaxial strain can drive the system to a
regime where the electrical polarization can be effortlessly rotated and thus yield giant electrophononic
responses that are at least one order of magnitude larger than in the unstrained system. These results derive
directly from the almost divergent behavior of the electrical susceptibility at those critical strains that drive
the polarization on the verge of a spontaneous rotation.
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Heat in insulators and semiconductors is carried by
phonons, the quanta of lattice vibrations, and the thermal
conductivity is determined by the associated dissipative
processes. The manipulation of phonons and the dynamical
tuning of the thermal conductivity of a solid are problems
of fundamental interest in condensed matter physics [1–3]
and have important implications in renewable energy
applications—such as vibrational energy harvesting [4],
thermoelectricity [5], or electrocaloric cooling [6]—and for
the implementation of a phonon-based logic, which relies
on thermal diodes [7,8] and transistors [9], and where
information is transmitted and processed by heat carriers.
Ferroelectric materials favor a spontaneous lattice

distortion, below a critical temperature, which has an
associated dipole moment that can be controlled with an
external electric field. Therefore, they are the ideal play-
ground to explore phonon manipulation, because the
modifications of the lattice structure translate directly into
changes of the vibrational properties and thus of the thermal
conductivity. The polarization P can be selectively ori-
ented, for instance, creating neighboring regions separated
by domain walls, which may act as phonon scatterers or
filters [10,11]. More generally, an electric field can
strengthen or weaken P, when it is parallel to it, or partially
rotate it, when it has a component perpendicular to it
[12–14]. This electrophononic effect, whereby an electric
field is used to tune the thermal conductivity via a
controlled modification of the crystal lattice, paves the
way toward an all-electrical control of the heat flux.
The temperature- and field-dependent thermal conduc-

tivity κ can be written as a second-order expansion in terms
of the thermal-response tensors α and β as

κijðT;EÞ ¼ κ0ijðTÞ þ
X

k

αij;kðTÞEk þ
X

kl

βij;klðTÞEkEl;

ð1Þ

where i, j, k, and l are the spatial directions x, y, and z and
κ0 is the conductivity at zero applied field. The physical
mechanisms that lead to a coupling between E and κ are
different for fields parallel or perpendicular to P. As shown
in Ref. [12] by some of us, in the former case the applied
field results in a hardening of the phonon frequencies
throughout the whole spectrum, if E is parallel to P, or a
softening, if it is antiparallel to it. In the latter case the main
effect of the applied field is lowering the symmetry of the
lattice, thus leading to a larger phase space for phonon-
phonon anharmonic scattering processes [12,13]. The
reported changes in the thermal conductivity are large,
but typically require applied electric fields that are sub-
stantial. In this Letter, we study the dependence of the
electrophononic coefficients α and β on epitaxial strain and
show that suitable strain conditions can increase them by
one order of magnitude and result, in principle, in nearly
divergent responses at certain critical strains, where a
vanishing small electric field leads to a large variation of
the thermal conductivity.
We focus on PbTiO3 (PTO), a paradigmatic ferroelectric

oxide with a tetragonal perovskite structure and a critical
temperature of 760 K, and consider biaxial tensile strains ϵ
in the plane perpendicular to the tetragonal axis of the
ground state up to 3%. Note that biaxial strains within this
range can be routinely achieved by epitaxially growing
PTO thin films on appropriate substrates [15]; further, the
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strain can also be controlled dynamically if a piezoelectric
substrate is used [16,17].
We calculate the ground-state structure, the harmonic

and third-order anharmonic interatomic force constants
(IFCs) within second-principles density-functional theory
(SPDFT). The term second principles refers to methods that
are first-principles based both in their formulation and in
the way the information needed to use them is obtained
[18]. We use the implementation of the SCALE-UP code
[18,19], which relies on polynomial potentials fitted from
DFT calculations. As most first-principles approaches,
SPDFT reproduces accurately the vibrational and response
properties of PTO [19] and it has a documented predictive
power for the most important structural, vibrational, and
response properties of ferroelectric perovskite oxides
[20,21]. We compute the IFCs in supercells defined as
an 8 × 8 × 8 repetition of the five-atom unit cell using the
finite differences method. For the harmonic displacements
we use the PHONOPY code [22] considering all neighboring
interactions. THIRDORDER.PY [23,24] is used to determine
the anharmonic interactions, neglecting those beyond
twelfth neighbors, a choice that we checked yields con-
verged results. The IFCs calculated within the SPDFT
framework are used to obtain an iterative solution of
linearized phonon Boltzmann transport equation (BTE)
[25] with the SHENGBTE code [24], thus avoiding the
shortcomings of the relaxation time approximation that
treats normal processes as resistive scattering events
[25,26]. The thermal conductivity is then expressed as

κij¼
1

kbT2NΩ

X

λ

nλðnλþ1ÞðℏωλÞ2vi;λτλðvj;λþΔj;λÞ; ð2Þ

where N is the number of q points used in the sampling of
the Brillouin zone, Ω the volume of the five-atom per-
ovskite unit cell. The sum runs over all phonon modes, the
index λ including both q point and phonon band. nλ is the
Bose-Einstein distribution function, and ωλ, τλ, and vi;λ
correspond to the phonon frequency, relaxation time, and
group velocity ∂ωλ=∂qi, respectively. The term Δj;λ takes
into account the deviation of the heat current with respect to
the relaxation time approximation approach and is thus
relevant on those systems where normal processes play an
important role. We solve Eq. (2) on a 8 × 8 × 8 q-point grid
and obtain the thermal conductivity κðTÞ by summing over
all the modes. We also include isotopic disorder scattering,
using the natural abundances of isotopes of Pb, Ti, and O,
within the model of Tamura [27].
We first investigate the dependence of the polarization

on the applied strain, i.e., at increasing values of the
substrate lattice parameter, asub. As it can be seen in
Fig. 1, at a critical strain of ϵc;1 ∼ 1.25% the polarization
P, which was initially oriented along the z axis, Pzk⃗, starts
rotating and for a strain of ϵc;2 ∼ 1.73% it lies entirely

within the xy plane, P ¼ Px
⃗iþ Pyj⃗, with Px ¼ Py. This

behavior has been previously reported in PTO and in
other perovskite oxides and derives from the preferential
alignment of P with the longer axis [28–30]. Notice that
the tetragonal phase with space group P4mmð99Þ is only
present when Px¼Py¼0 and Pz ≠ 0. When Px ¼ Py ≠ 0

and Pz ≠ 0, between ϵc;1 and ϵc;2, we find a monoclinic
phase Cmð8Þ, and when P falls into the xy plane the
structure has the orthorhombic symmetry Amm2ð38Þ. The
applied biaxial tensile strain enlarge the cell in xy plane and
shrinks it along the z axis (equivalent to the tetragonal axis
in the present case for ϵ ¼ 0), tending to make the three
lattice vectors similar and thus triggering the rotation of the
polarization (Fig. 1, top panel). Although the reliability of
the results obtained within the SPDFT approach here
employed has been demonstrated in different contexts
[13,20,21], we have explicitly verified that the PðϵÞ curves
of Fig. 1 reproduce well results obtained within DFT, using
the VASP code [31] with the local density approximation
and a plane-wave cutoff of 500 eV with the projector
augmented-wave method [32,33]. Note also that, in this
Letter, we are assuming that PTO is in a monodomain state.
In reality, multidomain configurations may form, yielding a
richer behavior, and experimentally measured values of the
thermal conductivity are smaller than those estimated here
[34]. Nevertheless, the intrinsic properties of the domains
with rotating polarization should be well captured by our
calculations.

FIG. 1. (Top panel) Lattice parameters and (main panel)
components of the polarization, P and diagonal terms of the
electrical susceptibility tensor χ , as a function of the substrate
lattice parameter asub. The applied strain referred to the lattice
parameter of the zero kelvin cubic phase is shown in the axis
above the top panel.
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The diagonal components of the electrical susceptibility
tensor χ are also plotted in Fig. 1. When the strain-enabled
rotation of the polarization is about to occur the suscep-
tibility experiences an enormous increase. This behavior is
an indication that in those conditions a vanishing small
electric field is sufficient to induce a large change in the
polarization and the attendant large structural deformation.
So, for instance, χxx starts increasing slowly as asub grows,
but when ϵ reaches the critical value of ϵc;1 ∼ 1.25% it
essentially diverges, a behavior that corresponds to the
strain-driven onset of Px ¼ Py in a second-order transition.
χzz has a similar behavior when ϵ is decreased in a highly
strained sample and reaches ϵc;2 ∼ 1.73%. In this case,
we observe a discontinuity in the polarization, with the
susceptibility reaching very large values as well. This
behavior is typical of weakly first-order transformations,
which are common in ferroelectric perovskites like PbTiO3

[35] or BaTiO3 [36].
The effortless rotation of the polarization close to some

critical strain values, reflected in the large increase of the
susceptibility, hints at a similar behavior of the electro-
phononic coefficients. Therefore, for each of the strain
values considered we have solved the phonon BTE and
computed the thermal conductivity κ, first without field and
then applying increasingly large field values along the x
and z axes to compute the α and β tensors. All the results
discussed from now on are calculated at 300 K and before
the saturation of the dielectric response.
In the absence of field, as one can observe in Fig. 2,

the thermal conductivity tensor is anisotropic, as expected
in a tetragonal or orthorhombic lattice. More precisely,
when no strain is applied the component parallel to P
(κzz ¼ 12 Wm−1K−1) is relatively low and almost three
times smaller than the components perpendicular to P

(κxx ¼ κyy ¼ 30 Wm−1 K−1). Both κxx and κzz undergo a
similar decrease until the strain-enabled rotation of the
polarization takes place. After that κzz > κxx, because now
P lies in the xy plane, and both components remain roughly
constant, with no significant dependence on strain. The
anisotropy of κ is recovered after the full rotation of P
and the ratio between the independent components of κ is
still around 2.5, though now κii settle to lower values.
The strain-induced change in the thermal conductivity
makes κxx and κzz reach a minimum value (4.8 and
3.8 Wm−1K−1 , respectively) for ϵc;1 < ϵ < ϵc;2, when
the material is in a monoclinic phase with both in-plane
and out-of-plane polarization components. Notice that by
simply applying a biaxial strain to the lattice it is possible to
achieve a huge reduction of κ. Indeed, close to ϵc;1 and ϵc;2,
κxx can be reduced 85% and κzz reduced 70% compared to
their values in the unstrained system.
To study electrophononic effects we have considered

fields from 5 × 104 to 2.6 × 105 V=cm for strain values far
from ϵc;1 and ϵc;2, and smaller values of around 102 V=cm,
where the response of κ is much stronger (see Fig. 3). The
change in κ as a function of the electric field E represented
in Fig. 3 can be fitted to Eq. (1) in order to obtain the
coefficients αij;kðTÞ and βij;klðTÞ that allow describing the
electrophononic response. By using Eq. (1) we first focus
on the linear electrophononic response that relates κii to an
electric field Ei, i.e., αxx;x ¼ αyy;y and αzz;z. Our results are
shown in Fig. 2. As it can be seen there, αii;i has a sizable
value whenever E is parallel to P, i.e., αzz;z for ϵ < 1%,

where P ¼ Pzk⃗, and αxx;x ¼ αyy;y for ϵ > 2%, where

P ¼ Px
⃗iþ Pyj⃗. This observation agrees well with previous

reports of a dominant linear electrophononic response for
fields parallel to the tetragonal axis in PTO [12]. Yet, when
it approaches the critical strain values of ϵc;1 and ϵc;2, where

FIG. 2. Thermal conductivity and first-order electrophononic
coefficient αii;i as a function of the substrate lattice parameter
asub. The polarization direction is represented to indicate when E
is perpendicular or in the plane of P. The fluctuation of α far from
the critical points is caused by the error associated to the
polynomial fitting of Eq. (1).
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FIG. 3. Relative change of the thermal conductivity as a
function of an applied electric field for different values of the
biaxial strain. Solid lines show the response in κzz when a electric
field perpendicular to the z axis is applied. Dashed lines show the
electrophononic response in κxx when the electric field is applied
parallel to the z axis.
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P spontaneously rotates, αii;i experiences a sudden and
large increase. We found an increment of one order of
magnitude, though this gain can in principle be increased
by getting closer to the critical strains.
When the applied electric field is perpendicular to the

polar axis, the electrophononic response of κ is quadratic,
i.e., β ≠ 0, while the linear term α is zero by symmetry [12].
This can be observed in Fig. 2 in αxx;x ¼ αyy;y for ϵ < ϵc;1,

where P ¼ Pzk⃗, or analogously in αzz;z for ϵ > ϵc;2 when

P ¼ Px
⃗iþ Pyj⃗. In Fig. 4 the crossed terms of the linear

response αii;j and βii;jj for i ¼ j and i ≠ j are represented.
From Figs. 2 and 4 we can see that when the applied
electric field is perpendicular to the polarization it always
results in a quadratic reduction of the thermal conductivity,
with negative electrophononic coefficients β, being
α ¼ 0. On the contrary, when the applied electric field is
parallel to the polarization α is always positive. All the
nonzero coefficients tend to become very large close to the
critical strains.

To better characterize the electric field induced reduction
of the thermal conductivity and the interplay of the
electrophononic response with the epitaxial strain, in
Fig. 5 we have represented the percentage reduction of κ
as a function of strain at a given electric field. It can be
observed that close to the critical strain reductions of the
thermal conductivity up to 60% can be easily obtained by
applying a small electric field of Ei ¼ 5 × 104 V=cm.
Notice that the overall reduction of the thermal conductivity
has two components: at first it decreases as a result of an
applied strain close to the critical value, then it further
decreases when the electric field is applied. These compo-
nents can be dynamically tuned with high precision by
using a piezoelectric substrate for the former and by an
external bias for the latter.
In conclusion, we have studied the interplay between

the biaxial strain and the electrophononic response in a
paradigmatic ferroelectric perovskite. We have analyzed
the tendency to move from an out-of-plane to an in-plane
polarization at a critical tensile strain and shown that this
effortless and spontaneous reorientation of the polarization
results in giant electrophononic responses, at least one
order of magnitude larger that those reported in the
unstrained system, thus enabling the manipulation of the
phonon flux with vanishingly small electric fields. Since
the underlying physical mechanisms are robust and not
specific to certain materials or vibrational characteristics,
these effects can potentially be exploited in a broader class
of materials.
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