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Slow dynamics in an amorphous quasi-two-dimensional complex plasma, comprised of microparticles
of two different sizes, was studied experimentally. The motion of individual particles was observed using
video microscopy, and the self-part of the intermediate scattering function as well as the mean-squared
particle displacement was calculated. The long-time structural relaxation reveals the characteristic behavior
near the glass transition. Our results suggest that binary complex plasmas can be an excellent model system
to study slow dynamics in classical supercooled fluids.
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When a fluid is quenched by cooling or compression, it
may either crystallize or remain in an amorphous state,
depending on the complexity of the fluid and the quenching
depth. Such fluids are said to be “supercooled” when
they are still able to equilibrate in the experimental time
window, exhibiting a slow structural relaxation caused
by the rare rearrangement of atoms or molecules [1,2].
Otherwise, they become dynamically arrested and undergo
the glass transition. Understanding the mechanisms gov-
erning the slow dynamics and the approach to the glass
transition is a fundamental problem of classical condensed
matter physics [3-6].

The relaxation timescale in molecular glasses is ~14
orders of magnitude longer than that in high-temperature
liquids [1], which makes the glass transition inaccessible for
up-to-date numerical simulations. For this reason, model
soft-matter systems play a crucial role in the study of slow
dynamics [7,8]. Among these, colloidal suspensions [9-11]
and granular matter [12,13] have drawn particular attention.
As equilibrium strongly damped systems, colloidal suspen-
sions exhibit Brownian dynamics [14], while essentially
nonequilibrium granular matter obeys Newtonian micro-
scopic dynamics [15], with the dissipation introduced in
mutual particle collisions [16—18]. Due to their reasonable
experimental timescales and straightforward diagnostic
methods, both systems provide excellent conditions for
particle-resolved studies of slow dynamics.

Complex plasmas, composed of a weakly ionized gas
and charged microparticles, represent the plasma state of
soft matter [8]. They have several remarkable features
distinguishing them from other soft-matter systems [19,20].
First, since the background gas is dilute, the short-time
particle dynamics in strongly coupled complex plasmas is
virtually undamped, which provides a direct analogy to

0031-9007/19/123(18)/185002(6)

185002-1

regular liquids and solids in terms of the atomistic
dynamics. Second, most notable, the interparticle inter-
actions generally violate the action-reaction symmetry [21].
In stable binary (quasi-2D) complex plasmas [22] the
nonreciprocal interactions lead to a dynamical equilibrium
[23], where different particle species have distinct kinetic
temperatures. For a special class of interactions with a
constant nonreciprocity, the dynamical equilibrium is
detailed. This latter remarkable property of quasi-2D
complex plasmas allows us to employ standard methods
of equilibrium statistical mechanics for their description.
In this Letter, we report on the first dedicated study of
slow dynamics in quasi-2D complex plasmas. A binary
mixture of microparticles was used to suppress crystalliza-
tion and form an amorphous state. To describe the collective
dynamics and the structural relaxation, we measured the
mean-squared particle displacement (MSD) and the self-
part of the intermediate scattering function (ISF). The
evolution of MSD exhibits a crossover from the short-time
ballistic dynamics to a transient subdiffusive behavior
determined by collective interactions. The long-time decay
of ISF reveals characteristic features of supercooled fluids
approaching the glassy state. The presented results demon-
strate complementary advantages of quasi-2D complex
plasmas and point out their remarkable dynamical proper-
ties with respect to other soft-matter systems.
Experiment.—The experiment was performed in a modi-
fied Gaseous Electronics Conference (GEC) rf reference
cell [24-27]. The plasma was produced with a capacitively
coupled rf discharge in argon at a pressure of 0.66 Pa. The
negatively charged particles were levitated in the plasma
sheath above the bottom electrode, where the gravity force
is balanced by the electric force. Individual particles were
illuminated by a laser sheet from the side and their motions
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were recorded by a CMOS camera from the top. To
suppress crystallization, we used a mixture [28-31] of
melamine formaldehyde (MF) and polystyrene (PS) micro-
particles with diameters of 9.19 and 11.36 ym, respec-
tively, suspended at almost the same height. The discharge
power was a control parameter, to quench the binary
complex plasma. Unlike a 2D suspension of monodisperse
particles [Fig. 1(a)], the quasi-2D binary system was
amorphous [Fig. 1(b)]. The particle suspension slowly
rotated [32,33], which may have been induced by the
inhomogeneity of the laser illumination. To mitigate
this problem, we placed two aluminium bars on the rf
electrode, parallel to each other and separated by 9 cm. As a
result, the angular velocity was drastically reduced to
Q~ 1073 rad/s; see S.1 of the Supplemental Material
[34] for more details on the experimental procedure.
Results and analysis.—The crystalline and amorphous
complex plasmas shown in Fig. 1 had practically the same
areal densities, with the mean horizontal interparticle
distance of A ~0.55 mm measured from the first peak
of the respective pair correlation function (see Fig. 2 in the
Supplemental Material [34]). The density inhomogeneity
was within 1%. The qualitative difference between the
crystalline and amorphous states is conveniently illustrated
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FIG. 1. Comparison of a 2D plasma crystal (left panels) with a
quasi-2D amorphous state (right panels), obtained for equivalent
plasma conditions. The top views and the corresponding Fourier-
transformed images in the insets (representative of the static
structure factor) demonstrate that monodisperse MF particles
form a monocrystal with a triangular lattice (a), while a binary
mixture of MF and PS particles (with the mixing ratio about 1:1)
shows neither translational nor orientational long-range order (b).
The scale bars represent 20 mm~!. A square lattice domain is
highlighted by the dashed rectangle in (b). The side views and the
corresponding height histograms for the crystal, (c) and (e), and
the binary mixture, (d) and (f), reveal differences in the levitation
heights (z coordinates) of individual particles in the two cases.

with the static structural analysis. By applying a 2D fast
Fourier transformation (FFT) on top-view snapshots,
Figs. 1(a) and 1(b), we obtained the respective diffraction
patterns, plotted in the insets in log scale and representing
the static structure factor of the studied systems. One can see
that the diffraction pattern of the binary mixture exhibits
isotropic concentric rings, typical for amorphous materials.

The side view in Fig. 1 shows that MF particles in the
crystal were levitated at (practically) the same height
[panels (c) and (e)], while MF particles in a binary mixture
were suspended slightly higher than the PS particles [panels
(d) and (f)]. The height difference of 0.14 mm, determined
from a Gaussian fit of the height histograms, is about a
quarter of A. The interparticle interactions in this case
become essentially nonreciprocal due to the presence of
plasma wakes [19-21,46,47], and a binary mixture tends to
a dynamical equilibrium, where the upper particles have a
higher temperature of the horizontal motion than the lower
particles [23]. In our experiment, the kinetic temperature
was determined separately for the upper and lower par-
ticles, from a Maxwellian fit of the corresponding velocity
distributions. In agreement with the theoretical predictions
[23], the resulting temperature of the upper particles,
Tye ~ 1100 K, was substantially higher than the temper-
ature of the lower particles, Tpg ~ 930 K. The particle
charges, Opr ~ 13000e and Qpg ~ 16000¢ (with an uncer-
tainty of 30%), were deduced from the phonon spectra
of the corresponding crystalline suspensions under equiv-
alent discharge conditions. Simultaneously, these measure-
ments yielded the effective plasma screening length of
A=~0.4 mm for the presented example.

The thermodynamic state of a charged system is
characterized by the coupling and screening parameters
[8,48]. For a binary mixture, the relevant coupling
parameter is defined as I' = QupQpsv/n/ (kgT) with T =
(Twie + Tps)/2, and the screening parameter is k =
1/(Ay/n). Based on the measured values, we obtained
' ~ 6000 (with an uncertainty of 45%), and k ~ 1.5 (with
an uncertainty of 30%).

The structural relaxation is generally quantified by the
density-density correlation function in k space, F(Kk, 1),
which is the Fourier-transformation of the van Hove
correlation function [49], commonly referred to as ISF.
For practical purposes, it is convenient to se the self-
part of ISF, Fy(k,t) = N~'(3"Vexp[—ik - Ar;(7)]) with
Ar;(t) = r;(t + ty) —r;(ty), describing the evolution of
single-particle correlations [4,50,51]. Here, r;(¢) is the
position of the particle i at the moment 7, and (...) denotes
averaging over t,. For the analysis, we selected a region
of interest (ROI) such that the “rattlers” (a few visibly
oscillating irregular particles) and their nearest neighbor-
hood were removed. The structural relaxation in unstressed
amorphous materials does not depend on the orientation
of the wave vector k, so here we also averaged over the
orientation. The calculated F(k,t) are shown in Fig. 2.
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FIG. 2. Structural relaxation in a quasi-2D amorphous com-
plex plasma. The results are for the experiment shown in the
right panels of Fig. 1. (a) The self-part of the ISF [F(k,1),
squares] and the cage-relative ISF [Fcr(k, 1), solid lines],
plotted for kA =z (black), 2z (blue), 3z (green), and 4z
(yellow). (b) MSD measured with long-distance microscope
(red triangles) and using a video microscopy technique with
micro lens (black squares); the black solid line shows MSDcg
measured with the latter technique. The vertical grey stripe
marks a gradual crossover to a “forced” relaxation induced by a
slow rotation and the cyan stripe marks the fit range. The inset
shows the glass transition lines derived from MCT [35] for the
Yukawa potential (dashed line) and the Kompaneets potential
[47] (dotted and dash-dotted lines, representing collision
parameter { = 0.5 and 0.25, respectively). The symbol above
the transition lines shows I' and x deduced for our experiment
with errors, indicating that thermodynamically the system forms
a glass. Fitting the long-time asymptote of ISF (for a given k)
with the stretched-exponential law [dashed lines in (a)] yields
the amplitude factor A (c), the stretching exponent f (d), and the
timescale 7 (e) (the dashed line demonstrates a 1/k? fit); see S.3
of the Supplemental Material [34] for details.

The stretched-exponential (Kohlrausch) law [3,4,49,
52-54], F,(k,t) ~A(k)exp{—[t/z(k)]/®)}, usually pro-
vides a good fit for the long-time asymptote of ISF, the
so-called alpha relaxation. The outcome of the fit is shown
in Fig. 2(a) by the dashed lines. The law is determined by
three parameters: the amplitude factor A(k), the timescale
of the alpha-relaxation z(k), and the stretching exponent
PB(k) < 1. Selecting a time domain appropriate for the fit is
generally not an easy task [4,52,55,56]—an overlap with
the transient beta relaxation should be avoided, which
imposes the lower time bound for the fit. In our experiment,
we have an additional constraint, associated with a slow
rotation of the particle suspension: although we were able
to reduce the angular velocity down to Q ~ 1073 rad/s,
there still has been a profound effect caused by this
rotational shear [57] at sufficiently long times, where the
accumulated strain 2Qr exceeds a certain critical value.

According to Zausch et al. [58], the onset of plastic
deformations in glassy systems (upon a simple stress) is
expected when a strain exceeds a critical value of ~107!.
Using this as a guide, we estimate the upper time limit
as t~ 10 s. Figure 2(a) shows that the measured ISF
indeed starts falling off rapidly in the time range between
50-100 s, indicating a crossover from the generic alpha-
relaxation to the rotation-induced decay.

The Kohlrausch amplitude A(k) and the stretching
exponents (k) are plotted in Figs. 2(c) and 2(d). In
agreement with the mode coupling theory (MCT) of the
fluid-glass transition [4,52,59], both A(k) and f(k) tend to
unity for k — 0 and decrease monotonically at large k.
The timescale of the alpha relaxation, also obtained
from the Kohlrausch fit and shown in Fig. 2(e), closely
follows a 7(k) « 1/k*> dependence. Such scaling is pre-
dicted by MCT at small k, while for kK — oo it should
change to 7(k)  1/k'/?, where b is the asymptotic value
of p(k) (the von Schweidler exponent) [3,4,51,60]. As
the value of b is expected to be close to ~0.5, the
measured behavior of z(k) is in good agreement with
the theory [52,61].

Recently, Yazdi et al. [35] employed MCT to calculate
the idealized glass transition lines for 2D complex plasmas,
using the Yukawa and Kompaneets [47] potentials for
the interparticle interactions. These results, derived for a
monodisperse system, are depicted in the inset of
Fig. 2(a) where the transition lines are plotted in the
(T, k) plane. Note that for the Kompaneets potential, we
plot the transition lines for two typical values of collision
parameter { [47] (which is the ratio of a field-induced
screening length to the ion-neutral mean free path). This
potential provides more realistic description of the inter-
actions in 2D complex plasmas. The values of I' and «
deduced for our experiment fall substantially above the
transition lines regardless of the model, which indicates that
thermodynamically the system formed a glass.

It is instructive to complement the analysis by calculat-
ing MSD = N~!{>"¥|Ar;(#)|?), which is directly related
to ISF in the limit k — 0 [4]. Figure 2(b) shows that MSD
exhibits a ballistic behavior « 7> for ¢+ <0.1 s; i.e., the
short-time in-cage motion obeys Newtonian dynamics. In
fact, the interaction of particles with gas becomes important
for vt 2 1, where v is the damping rate due to gas friction
[8] (umr ~0.8 s7! and vpg ~ 0.9 s~! for our conditions).
Thus, up to ¢ ~ 1 s the measured MSD reflects the generic
behavior occurring in molecular supercooled liquids. The
behavior becomes substantially subdiffusive by that time,
indicating the onset of transient beta relaxation, with a
gradual transition to the alpha relaxation regime observed
in Fig. 2(a) at r 2 10 s.

It has been recently discovered that Mermin-Wagner
fluctuations induce a significant translational motion in
a 2D system [62,63]. The resulted collective motion can
be subtracted by measuring the cage-relative ISF and

185002-3



PHYSICAL REVIEW LETTERS 123, 185002 (2019)

1.0 i 0.8[ '+*1JL'”" -
3 @ 3 _ r T 0 1
T 0.9F 3 4 & 06F==. % -
I E (] @ r < e ]
4 E® 1w,i>0.75 3 2] - T 1
< 0.8 0.5<I¥4/<0.75 3 04'_... R &_’
L TR e w05 W ok |
E — Kohlrausch fit § 3 : : : hygl=1 ‘ £
E 11 IIIIII| 1 1 IIIII; L 11 IIIIII| 1 1 II-IVI\II-

0.7 10 100 %2 10 100

t (s) t (s)
1.5 o T 10°g T ——
1o K (©) 1 = o ® ]
O . I E - AN
= f N 1 2w e YR
0.5 -~ —E 4 x
o ] C @ 1
T P TR RO (R 5 O bl
0.0 4™ 2™ g™ y™ s 10 1 2 345
kA (r) kA (r)
FIG. 3. Effect of the local structure on the relaxation dynamics.

The self-part of the ISF for particles with different local order
parameter Wy, plotted for kA = z (a) and 3z (b). k dependence
of the stretching exponent f (c), and the timescale = of alpha
relaxation (d). A perfect square lattice domain (|¥g| = 1) is
depicted in (b). The inset in (d) shows the distribution of |¥g].

MSD, as Fycgr(k,1)=N"1(>"Nexp[—ik-Arcg,(?)]) and
MSD¢g = N7HY N |Arcg;(1)|?),  rtespectively, where
Arcg (1) = Ar(t) = N;! Zjv” Ar;(r). Here, j denotes
nearest neighbors of the particle i at initial time #;, and
the sum is over all neighbors N,. As shown in Figs. 2(a)
and 2(b), the cage-relative relaxation is much slower,
indicating that the fluctuations are significant. The mea-
sured difference between F cg (k. t) and F(k, t) (averaged
over orientations of k) is substantially larger than that
observed in colloids, since the charged particles in a plasma
interact via much softer interactions, allowing stronger
fluctuations. However, we point out that the shear stress
may enhance the collective motion too, and therefore play a
role in the discrepancy between F cr (k, 1) and F(k, t) (see
Supplemental Material [34]). This requires further careful
investigations.

Figures 3(a) and 3(b) show that the dynamical relaxation
also depends on the local structure [64]. In quasi-2D
complex plasmas, square lattice domains of limited size
are embedded in amorphous structure [36,65]. Such struc-
ture can be quantified by the local order parameter Wg =
%Z i e, where we only consider eight nearest neighbors
and 6, is the angle between r; — r and the x axis. The fit of
ISF by Kohlrausch law shows that for small k, the value of
f for square domains exceeds unity, implying a compressed
exponential relaxation, see Fig. 3(c). As the majority of the
particles in amorphous state show diffusive motion, the
particles in the lattice exhibit ballistic motion, represented
by the plateau of the product zk for small , see Fig. 3(d).
Our results for a quasi-2D system complement the recent
numerical simulation in 3D metallic glass-forming melt,
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FIG. 4. Self-part of the van Hove correlation function,
G,(Ar, 1), at a lag time of 10 s (a) and evolution of the non-
Gaussian parameter, a,(7) (b). The green and blue solid lines in
(a) are the Gaussian fits for the slowest 95% and fastest 5% of
particles, respectively. The red and black symbols in (b) represent
data obtained with long-distance microscope and with micro lens,
respectively [see Fig. 2(b)].

where clusters of icosahedra exhibit solidlike compressed
exponential relaxation [64].

The dynamical heterogeneity is closely related to the
kinetic slowing of alpha relaxation in supercooled liquids.
It can be manifested as a non-Gaussian behavior of the
self-part of the van Hove correlation function, G,(Ar, t) =
N=YS"N§[Ar — Ar;(1)]), which is essentially a probability
distribution of particle displacement and is Gaussian for
purely diffusive particles [10,66,67]. As shown in Fig. 4(a),
the distribution is broader at timescales of the alpha
relaxation, as expected for supercooled liquids. The
lowest-order deviation of G from a Gaussian is quantified
by ay(t) = (Ar*(2))/[(1 + 2/d){Ar*(2))?] — 1, where d is
the dimension of the system. Indeed, Fig. 4(b) shows
that a,(¢) exhibits a peak at =~ 10 s, corresponding to
the transition to the alpha relaxation [10,67]. Besides, the
presence of the square lattice domains may also contribute
to the heterogeneity.

Conclusion and outlook.—This Letter reports on the
first systematic attempt to experimentally investigate glassy
dynamics with complex plasmas. The presented results
could be exceptionally important for particle-resolved
studies of slow dynamics in future, as complex plasmas
are dynamically complementary to other soft-matter sys-
tems used for such investigations. We showed that the in-
cage motion of individual particles remains virtually
undamped (Newtonian), which enables modeling of
molecular glasses at timescales up to the transient regime
of the beta relaxation. A crossover to the fully damped
Brownian dynamics at longer timescales allows matching
with glassy behavior observed in colloidal dispersions [8].
Furthermore, binary quasi-2D complex plasmas open up a
unique opportunity to study fluids with distinct temper-
atures for different species [23], where the temperature
mismatch is controlled by the vertical levitation gap. Slow
dynamics and glass transitions in such systems may reveal
new facets inaccessible to “regular” simple liquids.

Our studies have also identified critical issues that need
to be resolved to improve the quality of future experiments.
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The most important is to suppress the global rotation of the
suspension: this process terminates the long-time relaxation
of ISF as well as a transition to the long-time diffusion.
Second, less critical but still important issue are rare
“rattler” events, sporadically occurring in the field of view
and destroying weak correlations in the alpha-relaxation
regime. Here, a careful choice of particles used in experi-
ments may be a solution.
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