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Stationary wave groups exist in a range of nonlinear dispersive media, including optics, Bose-Einstein
condensates, plasma, and hydrodynamics. We report experimental observations of nonlinear surface
gravity X waves, i.e., X-shaped wave envelopes that propagate over long distances with constant form.
These can be described by the 2Dþ 1 nonlinear Schrödinger equation, which predicts a balance between

dispersion and diffraction when the envelope (the arms of the X) travel at� arctanð1= ffiffiffi
2

p Þ ≈�35.26° to the
carrier wave. Our findings may help improve understanding the lifetime of extremes in directional seas and
motivate further studies in other nonlinear dispersive media.
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Stationary or nondispersive wave groups can occur in a
range of nonlinear dispersive media, including in optics
[1–3], Bose-Einstein condensates [4], plasma [5], and
hydrodynamics. In optics, families of linear localized wave
(LW) solutions to the free-space scalar wave equation
have been found [6–8]. One such family is the so-called
“X wave” characterized by an X-shaped packet structure
with a sharp, high amplitude centroid. Linear X waves have
been observed and confirmed to be nondispersive in optical
fibers [9]. Optical LWs play a role in free space commu-
nications [10], optical lithography [11], and optical rogue
waves [12].
When the scales of group velocity dispersion (GVD) and

nonlinear amplitude effects are comparable, nonlinearity
must be considered. Whereas GVD can be described using
a dispersion relationship, amplitude-dependent nonlinear
effects are typically modeled through the universal non-
linear Schrödinger equation (NLSE) [13], which applies in
nonlinear dispersive media [14,15], and can be extended to
two spatial dimensions. Indeed, in optics, “light bullet”
nonlinear X waves have been predicted and created
experimentally [1,2], and extreme LW events or “rogue
waves” have been detected in optical telecommunication
fibers [16]. Because of the dispersive and nonlinear
character of water waves, an analogy between water waves,
optics, Bose-Einstein condensates, and plasma can be
naturally drawn [3,17–20].
Both the coupledNLSE (CNLSE) (whereby twononlinear

systems interact) and the 2Dþ 1 NLSE (whereby one
system exists with a crossing angle θ between the carrier
and envelope) can describe the evolution of crossing, weakly
nonlinear wave systems. Using the 2Dþ 1 NLSE, a critical
crossing angle of θc ¼ � arctan 1=

ffiffiffi
2

p
can be derived,

beyond which linear focusing becomes defocusing, and

the system achieves stability to sideband perturbations
[21]. In the CNLSE, a similar stabilization of the coupled
system is observed at the same critical angle [22]. For
hydrodynamics and at low interaction angles, numerical
simulations and experimentation have confirmed these
predictions, observing an increase in the kurtosis of crossing
seas up to approximately �25° that reduces rapidly as the
angle is increased towards θc [23]. These results have been
confirmed using phase-resolving numerical simulations for
realistic broadbanded crossing sea states, showing that the
maximum kurtosis is small at the critical angle, with the
minimum occurring at slightly larger angles [24].
In hydrodynamics, wave groups propagating at the

critical crossing angle predicted by the 2Dþ 1 NLSE
occur naturally at the fringes of the Kelvin ship wake
[25]. Furthermore, an isolated spectral energy peak tends to
spread outwards at this angle [26]. Through the elimination
of dispersion at the critical angle, it may be possible to
extend dramatically the lifetime of groups containing
extreme events. Indeed, previous numerical studies on
the three-dimensional evolution of long-crested waves
perturbed using random phases have shown natural for-
mation of slanted coherent structures [27] that interact to
produce long-lived rogue waves [28,29].
In this experimental study, we create for the first time a

nondispersive hydrodynamic X wave. We measure the
spatiotemporal free surface elevation of the X wave, and
compare it with numerical solutions of the 2Dþ 1 NLSE.
Theoretical background.—We consider the 2Dþ 1

NLSE for deep-water surface gravity waves [30]:

i

�∂A
∂t þ cg

∂A
∂x

�
− α

∂2A
∂x2 þ 2α

∂2A
∂y2 − βjAj2A ¼ 0; ð1Þ
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where x and y are the horizontal coordinates, t is time, and
Aðx; y; tÞ the envelope of a carrier wave of frequency ω0

and wave number k0 ¼ ðk0; 0Þ propagating in the x
direction. The coefficients of the 2D-NLSE are

cg ¼
∂ω
∂kx

����
k¼k0

¼ ω0

2k0
; ð2aÞ

α ¼ 1

2

∂2ω

∂k2x
����
k¼k0

¼ ω0

8k20
; ð2bÞ

β ¼ ω0k20
2

: ð2cÞ

While the second derivative in x is responsible for envelope
dispersion, the second derivative in y implies diffraction.
The leading-order identity ∂A=∂t ≃ −cg∂A=∂x can be used
to transform the 2Dþ 1 NLSE to a form suitable for
laboratory experiments [31,32],
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We seek solutions corresponding to envelopes traveling at
an angle θ to the carrier wave, which can be introduced
through the transformation T ≡ t cos θ þ y sin θ=cg, giving
from (3),

i
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∂x þ cos θ

cg
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−
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c3g
ð1 − 3 sin2 θÞ ∂
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−
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cg
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ð4Þ

i.e., the integrable 1Dþ 1 NLSE with a new coefficient in
front of the dispersive term, α0 ≡ αð1–3sin2θÞ=c3g. At

θ ¼ �θc ¼ � arctanð1= ffiffiffi
2

p Þ ≈�35.26°, the dispersive
term becomes zero, then switches sign becoming defocus-
ing [26,33]. This is the critical angle examined experi-
mentally herein.
For small-amplitude waves, the nonlinear term in (4) can

be neglected, and we have a dispersive linear Schrödinger
equation. If θ ¼ �θc, the system also becomes nondisper-
sive (α0 ¼ 0), and the solution can be written as the
superposition of two solutions, Aþ ¼ Aðx; T; θþc Þ and
A− ¼ Aðx; T; θ−c Þ with θþc ¼ þθc and θ−c ¼ −θc,

Aðx;y; tÞ ¼ A0e
−ft cos θþc þ y

cg
sin θþc −½ðx cos θþc Þ=ðcgÞ�g2=ð2σ2Þ

þA0e
−ft cos θ−cþ y

cg
sin θ−c−½ðx cos θ−c Þ=ðcgÞ�g2=ð2σ2Þ; ð5Þ

where A0 is the theoretical linear focused amplitude of each
arm, σ� ≡ σ= cosðθcÞ is the width of the group in the time
domain, and we have chosen Gaussian envelopes.
Equation (5) forms the characteristic linear nondispersive
X-shaped pattern illustrated in Fig. 1. The critical angle also

corresponds to the stability boundary of a uniform wave
train [33,34]. Single crossed-wave groups traveling at the
critical angle are therefore expected to travel without
changing shape, as they are both unaffected by GVD and
spectral sideband instabilities (see Supplemental Material
[35] (SM)]. Because of energy transfer from their highly
centralized energy peak, double-crossed wave groups may
experience nonstationary behavior, as there are enough
components to partake in four-wave interactions [26,36].
Experimental methodology.—To examine the effects of

crossing at large angles, we carried out experiments in the
circular FloWave Ocean Energy Research Facility at The
University of Edinburgh (see SM [35], Fig. S3, adapted
from [37]). This multidirectional wave basin is encircled by
168 actively absorbing wave makers, enabling creation of
waves in all directions. We adopt a Cartesian coordinate
system with origin at the center of the tank. The x axis is in
the direction of the phase velocity of the carrier waves.
Experiments were sufficiently short that reflections did not
interfere with incident measurements.
To define a single crossed-wave group, we chose a

narrow-banded Gaussian amplitude spectrum in frequency
space,

ÂðωÞ ¼ A0σ
�ffiffiffiffiffiffi

2π
p exp

�
−
ðω − ω0Þ2σ�2

2

�
; ð6Þ

where σ� is now more generally the group duration, and (6)
corresponds to the Fourier transform of a single arm in (5)
at x ¼ y ¼ 0. The spectral bandwidth (1=σ�) was set as
large as possible to encourage dispersion at noncritical
angles while keeping the group narrow-banded and avoid-
ing distortion of the signal due to the minimum frequency
cutoff ωmin (corresponding to kmin; see SM [35]).
Table I summarizes the two types of experiments

conducted: single crossed-wave groups (experiment 1a–
1d and 2a–2d), consisting of only a positive arm, and X
wave groups, consisting of both arms (experiment 3). Both
lower-steepness (experiments 1a–1d) and higher-steepness
(experiments 2a–2d) single crossed groups were tested,
while X wave group experiments were always of a higher
steepness. A (nondimensional) spatial nonlinear scale,
λN ¼ cg=ðλ0βjA0j2Þ allows the number of wavelengths
over which nonlinear effects take place to be estimated.

FIG. 1. Theoretical X wave envelope solution formed by two
Gaussian envelopes, as parametrized in (5).
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For the single crossed-group experiments, the crossing
angle θ was varied while keeping the group duration σ�
constant. Each experiment was repeated four times.
Results.—We compare our experimental results with

numerical solutions of the 2Dþ 1 NLSE (split-step
Fourier method), using as the boundary condition the
complex wave packet amplitude at the first gauge (smallest
x). We obtain this from the recorded free surface using
A ¼ ðηþ iη̃Þ exp½−iðk0x − ω0tÞ�, where η̃ is the Hilbert
transform of the free surface elevation η (e.g., [31]). For
single crossed-wave groups, Fig. 2 presents time series of
the experimental and numerical packet envelopes (see
Fig. S5, SM [35] for spectra). The indicative confidence
bands obtained from four repeats of each experiment are
not clearly visible due to their proximity to the mean,
indicating very good repeatability. We introduce two
quantitative measures of dispersion: maximum group
amplitude and group duration, which we define through
the focus time, tf ≡P

N
i¼1 tiAi=

P
N
i¼1 Ai, in the form of a

standard deviation, as

tσ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 ðti − tfÞ2AiP

N
i¼1 Ai

s
; ð7Þ

where the indicator i corresponds to the discrete sampling
points in time. Figure 3 shows the change in the maximum
amplitude and the group duration from (7) as a function of
evolution distances for different crossing angles.
In the lower-steepness case, both experimental and

numerical unidirectional packets show clear focusing
[Fig. 2(a)] across approximately 10λ0 of evolution, includ-
ing a decrease in group duration as the group undergoes
dispersive focusing [Fig. 3(b)]. At θ ¼ θþc =2, the packet
shows behavior very similar to unidirectional [Figs. 2(b)
and 3(b)], as expected based on linear dispersion [see
Fig. S1(b), SM [35] ]. At the critical crossing angle, the
amplitude only increases minimally [Fig. 2(c)], and
the duration stays constant across the evolution distance
[Fig. 3(b)]. Beyond the critical angle, at 40°, changes in the

packet amplitude are still within one standard deviation
[Fig. 2(d)], and the duration stays constant with minimal
changes also predicted by linear theory [see Fig. S1(b), SM
[35] ]. For all angles, behavior is well predicted by the
2Dþ 1 NLSE and predominantly linear, as can be con-
firmed by the absence of significant spectral changes across
the evolution distance [see Figs. S5(a) through S5(d),
SM [35] ].
In the higher-steepness cases, the unidirectional [Fig. 2(e)]

and θ ¼ θþc =2 [Fig. 2(f)] experiments show much more
substantial focusing than their lower-steepness counterparts.
Nonlinear changes have likely occurred, as is evident from
significant spectral changes [Figs. S5(e) andS5(f), SM[35] ],
including a drop in peak spectral amplitude and significant
spectral widening as a classical signature of modulational
instability. The 2Dþ 1 NLSE (black lines) with its restric-
tions on steepness and bandwidth captures the main features
but not all aspects of the observed behavior for these higher-
steepness, close-to-unidirectional cases.
The time-domain behavior of the higher-steepness criti-

cal angle experiment [Fig. 2(g)] shows some changes in the
packet shape, with larger waves moving to the front of the

TABLE I. Experimental parameters, with ϵmin=ϵmax denoting
the minimum/maximum steepness values (ϵ≡ k0jAjmax) and λN
the nondimensional nonlinear spatial scale.

Experiment θ (°) ω0 (rad s−1) k0d σ� (s) ϵmin ϵmax λN

1a 0 0.08 0.09 24.9
1b θþc =2 0.08 0.09 24.9
1c θþc 7.07 10.2 2.29 0.08 0.09 24.9
1d 40 0.08 0.08 24.9
2a 0 0.17 0.25 5.6
2b θþc =2 0.17 0.24 5.6
2c θþc 7.07 10.2 2.29 0.17 0.19 5.6
2d 40 0.17 0.16 5.6
3 θþc and θ−c 7.07 10.2 2.29 0.18 0.26 5.0

(a) (e)

(f)

(g)

(b)

(c)

(d)

FIG. 2. Envelope time series (normalized by the carrier period,
T0) for the single crossed-wave lower-steepness experiments 1a–
1d (a)–(d) and the higher-steepness experiments 2a–2d (e)–(h).
Blue, red, and black lines denote experiments at the initial
(x=λ0 ¼ −6.67) gauge, and experiments and numerical solutions
at the final (x=λ0 ¼ 3.60) gauge, respectively. The dark and light
lines show the mean and the confidence bands (� one standard
deviation), the latter difficult to distinguish due to strong
repeatability.
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group creating a double peak, but the maximum amplitude
remains largely unchanged [Fig. 3(c)]. The nullification of
the dispersive term in the 2Dþ 1 NLSE at the critical angle
has removed linear focusing and stabilized the wave group,
as predicted by linear stability analysis [cf. (S2) and Fig. S2
in SM [35] ]. Beyond the critical angle, at 40° [Fig. 2(h)],
we observe very similar behavior. The numerical solution
of the 2Dþ 1 NLSE shows these effects clearly with a
completely stationary wave group in the group frame for
the critical angle [Fig. 2(g)].

Summarizing, it is clear from Figs. 3(c) and 3(d) that, as
with the lower-steepness experiments, the behaviors of the
35.26° and the 40° cases are least dispersive, as well
predicted by the 2Dþ 1 NLSE, and that most of the
strong nonlinearity observed for small and zero angles is
quelled for these larger crossing angles. For the higher-
steepness experiments, spectral changes occur that are
somewhat greater than predicted by the 2Dþ 1 NLSE
or small but nonzero where zero changes are predicted by
the 2Dþ 1 NLSE [Figs. S5(e) through S5(h), SM [35] ].

(a) (b) (c) (d)

FIG. 3. Relative change of the maximum packet amplitudeΔjAjmax ¼ jAjmax − ¯jAjmax (a),(c) and the group widthΔtσ ¼ tσ − t̄σ (b),(d)
in space for different crossing angles, where ¯jAjmax and t̄σ denote averages across the gauges, and tσ is defined by (7). (a),(b)
Experiments 1a–1d (lower steepness). (c),(d) Experiments 2a–2d (higher steepness). The continuous and dashed lines denote the mean
across repeat experiments with error bars (� one standard deviation) and numerical solutions, respectively.

FIG. 4. Spatiotemporal comparison of the experimental (left) and numerical (centre) X wave packet (experiment 3) as the packet
evolves in space: Δx=λ0 ¼ −9.6, −3.2, 1.9, 4.4 (rows, descending). The black dashed lines correspond to the 35.26° angle. The
amplitude spectra Âðω; kyÞ of the numerical results are also presented (right): gray lines are grid lines, red crosses indicate the position of
the contour at Â=Â0 ¼ 0.33with the back dash-dotted lines aligned with the crosses in the top panel. We show the spatiotemporal signals
in the group reference frame as predicted by linear theory.
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Turning from the single-crossed to the double-crossed
or X waves (experiment 3), we reconstruct surfaces of
measured packet amplitude Aðy; tÞ at different gauge
locations and compare with numerical solutions and cor-
responding spectra Âðω; kyÞ, as shown in Fig. 4. At the
beginning of its evolution (top rows), the experimental X
wave structure is clearly visible with distinct arms lying on
the �θc lines and a centroid of amplitude 2A0. The X
structure maintains its global shape as it propagates across
the tank, although the finite number of straight wave
paddles and potential reflections makes perfect generation
by constructive superpositioning away from the center and
near the boundaries of the tank challenging (cf. large-time
behavior in Fig. 4).
For this higher-steepness experiment, the peak at the

crossing points of the two arms undergoes considerable
narrowing in the x direction (its direction of travel, shown
here as time t) and broadening in the y direction, a
phenomenon previously observed by Gibbs and Taylor
for directionally spread groups that are not crossing and
described therein as “walls of water” [38]. We observe this
behavior in both experiments and numerical simulations
of the 2Dþ 1 NLSE and note that it arises because of
resonant third-order nonlinearity from the interaction
between four wave components [36]. Accordingly, the
2Dþ 1 NLSE predicts a preferential energy transfer to
higher wave numbers, as shown in the right column of
Fig. 4. Unlike the single-crossed wave groups, where all the
nonzero spectral components are confined to a single line,
the double-crossed or X wave has sufficient components to
take part in four-wave interaction (cf. Phillips’s figure of 8),
which for a narrow-banded three-dimensional wave packet
has the largest preferential direction of energy transfer to
higher-wave numbers at 35.26° [26]. An extended set of
numerical solutions for single-crossed groups and X waves
confirms that the 2Dþ 1 NLSE predicts truly stationary
behavior for single-crossed waves at 35.26°; the most long-
lived X waves occur at angles close to 35.26° for small
steepness, with the angle of maximum lifetime increasing
up to approximately 45° for higher steepness (see Figs. S6
and S7, SM [35]).
Conclusion.—We have demonstrated experimentally the

existence of nondispersive single-crossed wave groups and
long-lived nonlinear hydrodynamic X wave packets when a
carrier wave is modulated by a wave group crossing it at
an angle of approximately �35.26°, as predicted by the
2Dþ 1 NLSE and previously observed experimentally in
optics. Our single-crossed wave group experiments showed
no linear or nonlinear focusing at the critical angle, with
both amplitude and group width remaining constant across
the evolution distance regardless of steepness, as predicted
by numerical solutions of the 2Dþ 1 NLSE.
When the two arms traveling at �35.26° are super-

imposed, a nondispersive hydrodynamic X wave is con-
structed, which we have observed in the laboratory. Such a

structure was observed to be quasistationary for a relatively
high steepness; however it became subject to third-order
resonant four-wave interactions, which are known to trans-
fer energy to higher wave numbers with a preferred
direction of �35.26° [26] and result in the most long-lived
X wave structures at angles �35.26° for small steepness,
increasing up to approximately �45° for higher steepness.
In the real ocean, such bimodal seas, with energy traveling
in two directions, do not occur infrequently [39], and this
preferred growth direction may lead to the natural gen-
eration of X waves, which in turn will be long lived due to
their lack of dispersion. Although unidirectional groups
focused to more extreme amplitudes, the experimental
observation of crossed groups propagating unchanged over
many wavelengths confirm the lifetime extension of wave
groups containing the potential for extreme events.
Finally, this work may motivate new numerical and

experimental studies to investigate the applicability of
directional coherent structures in different nonlinear dis-
persive physical media known to be described by the
NLSE, where such structures have not yet been observed,
such as plasma, Bose-Einstein condensates, and cold gases.
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