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We study synchronization between periodically driven, interacting classical spins undergoing a
Hamiltonian dynamics. In the thermodynamic limit there is a transition between a regime where all
the spins oscillate synchronously for an infinite time with a period twice the driving period (synchronized
regime) and a regime where the oscillations die after a finite transient (chaotic regime). We emphasize the
peculiarity of our result, having been synchronization observed so far only in driven-dissipative systems.
We discuss how our findings can be interpreted as a period-doubling time crystal and we show that
synchronization can appear both for an overall regular and overall chaotic dynamics.
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Since its discovery by Huygens, the phenomenon of
synchronization [1–4] has emerged in the most diverse
contexts. Examples of systems undergoing synchronized
motion range from coupled mechanical oscillators to
chemical reactions, from modulated lasers to neuronal
networks or circadian rhythms in living organisms, just
to mention only few of them. The essence of synchroniza-
tion can be very simply stated. Classical nonlinear systems
may asymptotically approach self-sustained oscillations;
a tiny coupling between these systems can induce their
oscillations to be locked in phase space.
All known systems undergoing synchronized dynamics

are driven and dissipative. It is therefore natural to ask if
synchronization can occur in a Hamiltonian classical system.
This is the problem we will address in this Letter. As we will
see below, this question, besides having a direct impact on our
understanding of dynamical systems, has important connec-
tions to chaos and the foundations of statistical mechanics.
In the case of a finite number of coupled classical

Hamiltonian systems whose dynamics is generically cha-
otic, synchronization can be ruled out. For more than two
degrees of freedom, even small integrability breaking leads
eventually to instability of the motion and chaos. In the
many-body case, this fact leads to thermalization (at infinite
temperature in the driven case) [5–7]. This picture can
drastically change if an infinite number of coupled time-
dependent classical Hamiltonian systems is considered. In
this Letter we will show that synchronization is possible
in this case. To the best of our knowledge, synchronization
in Hamiltonian systems has not been considered before.
This result has nontrivial connections to the foundations

of statistical mechanics. Usually, in the thermodynamic

limit, any integrability breaking of short-range interacting
classical Hamiltonian systems leads to an essentially fully
chaotic behavior and hence to thermalization [8,9]. Never-
theless, this is not the whole story [6] and there may be
important cases where this scenario does not apply. In
many-body quantum systems, ergodicity can be broken in
an extended region of coupling parameters due to inter-
ference effects; relevant examples are many-body locali-
zation (see [10] for a review) and many-body dynamical
localization [11–13]. The challenge is to get a similar
stabilization in classical Hamiltonian systems, where the
quantum interference provides no help. Here we provide an
example in a driven context.
In this Letter we consider a system of coupled classical

spins undergoing a periodic pulsed driving. The key point
of our analysis will be considering long-range interacting
Hamiltonian systems. Here the dynamics can be equivalent
to one single collective degree of freedom weakly coupled
to other modes, and the dynamics can be regular [14,15]
in the thermodynamic limit [16]. The effect of periodic
kicking on the regular or chaotic dynamics of classical
Hamiltonian systems has been already widely investigated,
see, e.g., [6,9,25–28]. Here we make a step forward and
analyze the synchronization behavior.
If uncoupled, the dynamics of the spins is regular and they

show entrainment with the external driving: the magnetiza-
tion oscillateswith a period double of that of the driving field.
Once the spins are coupled through the driving (see Fig. 1),
they show synchronized period-doubling oscillations for
a time, which scales with the system size and tends to
infinity in the thermodynamic limit. Therefore synchroniza-
tion is an emergent phenomenon, occurring only in the
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thermodynamic limit of an infinite interacting system, much
like a spontaneous symmetry breaking (as the one occurring
in theKuramotomodel [29,30]).We remark that the spins are
both entrained with the external driving and synchronized
with each other.
Being a form of spatiotemporal order in the thermody-

namic limit, robust in a full region of the parameter space
and for many initial conditions, occurring as a period
doubling with respect to the driving, synchronization can
be interpreted as a spontaneous breaking of the discrete
time-translation symmetry (from the symmetry group Z
to 2Z). Indeed, we can see this dynamics as a classical
Hamiltonian period doubling inspired by Floquet quantum
time crystals (see [31,32]). Our result is an example of
spontaneous time-translation symmetry breaking in a
classical Hamiltonian system. Until now, the only known
examples of classical time crystal are driven-dissipative
systems [33,34]. We remark that other forms of synchro-
nization could be possible where the nontrivial response of
the system has the same period of the driving: in this case
there would be synchronization without time-translation
symmetry breaking.
The Hamiltonian governing the N classical spins m⃗i is

given by HðtÞ ¼ P
N
j¼1H

ð0ÞðtÞ þ VðtÞ. The noninteracting
part has the form

Hð0ÞðtÞ ¼
XN
j¼1

½−2Jðmz
jÞ2 − 2hjmx

j þ ϕδτðtÞmx
j �; ð1Þ

and the kicked long-range interaction term is

VðtÞ ¼ −KδτðtÞ
X
i;j≠i

1

DðαÞ
i;j

mx
im

x
j ; ð2Þ

where, as in [26], we define δτðtÞ≡P
n δðt − nτÞ to

characterize the periodic kicks of period τ and J, hj, ϕ,

and K are tunable parameters. Throughout all the Letter we
consider periodic boundary conditions; we have defined

DðαÞ
i;j ≡ κðαÞ½min fji − jj; N − ji − jjg�α in order to imple-

ment them with the same prescription of [35,36]

(DðαÞ
i;j ∼ κðαÞji − jjα when ji − jj ≪ N). The quantity

κðαÞ is needed in order to make the interaction part of
the Hamiltonian extensive [37]: κðαÞ≡ N1−α if α < 1 and
unit for α > 1, in the marginal case α ¼ 1 equals logN.
The dynamics of this Hamiltonian is obtained using the

Poisson-bracket rules of the classical-spin components
fmμ

i ; m
ν
jg ¼ ϵμνρδijm

ρ
j where the Greek indices can take

values in x, y, z, the Latin ones in 1;…; N and ϵμνρ is the
Ricci fully antisymmetric tensor. With these Poisson-
bracket rules it is easy to write down the Hamilton
equations _mν

jðtÞ ¼ −fmν
jðtÞ;HðtÞg. Between two kicks

they are a set of N decoupled systems of three differential
equations. Across a kick they can be explicitly integrated,
and they give rise for each j to a rotation around the x axis
with angle depending on the values of the fmx

l g.
Let us start from the case with no interactions (K ≡ 0). In

this case there is a range of parameters where each classical
spin can show a period-doubling response to the driving
[38]. When hj < J, the Hamiltonian shows a Z2 symmetry
breaking. The Hamiltonian is indeed symmetric under the π
rotation around the x axis (my;z

l → −my;z
l , mx

l → mx
l ∀ l)

but the trajectories with energy smaller than a broken-
symmetry edge [39] break this symmetry. These trajectories
are doubly degenerate and appear in pairs transformed into
each other by the symmetry operation [see Fig. 1(b)].
The system shows period doubling if it is prepared in a
symmetry-breaking trajectory and the kicking with K ≡ 0
is used to swap between this trajectory and its symmetric
partner. The kick produces a rotation of angle ϕ around the
x axis. By considering ϕ≡ π there are period-doubling
oscillations of the zmagnetizationsmz

j (perfect swapping of

(a) (b)

FIG. 1. (a) Long-range coupled period-doubling classical spin systems. The blue boxes symbolize the single oscillators: without
interactions they are entrained with the single-particle kicking of angle ϕ, swapping the two symmetry sectors at each kick. The long
arrows indicate the interacting part of the kicking which decays as a power law in the distance, with exponent α. If α is small enough
there is still synchronization in the thermodynamic limit and appears as period-doubling oscillations in the average z magnetization.
(b) Symmetry breaking in the phase space for a single oscillator (the plots are for my ¼ 0). Around each of the two degenerate minima
and for energies smaller than the broken-symmetry edge E� (the central maximum at mz ¼ 0) there are trajectories that break the Z2

symmetry.

PHYSICAL REVIEW LETTERS 123, 184301 (2019)

184301-2



the symmetric trajectories). These oscillations are stable if
ϕ is made slightly different from π, there being a continuum
of symmetry breaking trajectories (see Ref. [38]).
The analysis of the interacting dynamics K ≠ 0 is crucial

to understand when the period doubling is stable in the
thermodynamic limit. We will characterize the interacting
dynamics by analyzing the average magnetization along the
z axis,mzðtÞ [see Eq. (3)]. For any finite size we see period-
doubling oscillations of mzðtÞ. These oscillations mark the
synchronization of the oscillators and are discrete rotations
in time analogous to the continuous ones of the Kuramoto
order parameter [29,30]. The period-doubling oscillations
die out after a transient; in order to see how this transient
scales with the system size, we define the order parameter
for period doubling

OðnτÞ≡ ð−1ÞnmzðnτÞ ¼ ð−1Þn
N

XN
j¼1

mz
jðnτÞ; ð3Þ

where mzðtÞ is the average z magnetization. OðnτÞ remains
nonvanishing, keeping its sign until there are period-
doubling oscillations of the spins. For any finite size of
the system, we numerically see that this quantity vanishes
after a transient, reaching in this way the thermal T ¼ ∞
value OT¼∞ ¼ mz

T¼∞ ¼ 0. (The T ¼ ∞ thermal values
are computed in the microcanonical ensemble for the
Hamiltonian without kicking.) To study the scaling of
the transient, we quantify its duration as td=τ¼Pt�=τ

n¼1nOðnτÞ=Pt�=τ
n¼1OðnτÞ. Here t�=τ is the first value

of n where OðnτÞ vanishes. In order to have persistent
synchronized period-doubling oscillations in the thermo-
dynamic limit, td must diverge with the system size N.
We initialize the system in a state where the order

parameter, Oð0Þ, is positive. A uniform initial state is a
very singular case: it is easy to show that for a uniform
Hamiltonian the dynamics is equivalent to a single
spin. The synchronization is trivial and corresponds
to the entrainment of the single oscillator. A nontrivial
situation arises in the case of a random initial state

(mz
jð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2j

q
, mx

jð0Þ ¼ ϵj cosφj, my
jð0Þ ¼ ϵj sinφj

with ϵj being a random variable uniformly distributed in
the interval ½0; ϵ� and φj uniformly distributed in ½0; 2π�).
We can also include disorder in the Hamiltonian by taking
the hj random and uniformly distributed in the interval
½h − Δh; hþ Δh�. In these random cases we average our
results over Nrand randomness realizations and evaluate the
error bars of any randomness-dependent quantity S as
stdðSÞ= ffiffiffiffiffiffiffiffiffiffi

Nrand
p

where stdðSÞ is the standard deviation of
S over randomness realizations.
As we vary the parameters of the system we find two

regimes. In the synchronized regime the decay time of the
order parameter scales as a power law, td ∼ Nb, and there
is synchronization in the thermodynamic limit. In the

thermalizing regime, on the opposite, there is not such a
scaling and consequently no synchronization. Some exam-
ples of these two different scalings are shown in Fig. 2(a).
Here we have considered the case of a kicking different
from the perfect-swapping one (we take ϕ ¼ 0.99π
instead of ϕ ¼ π): synchronization persists also for this
imperfect kicking, marking thereby the robustness of this

(a)

(b)

(c)

FIG. 2. (a) Scaling of td with N. Notice two possible regimes,
one in which there is the power-law scaling td ∼ Nb, and another
where there is no scaling. (b) Some examples of evolution of the
order parameter for different values of N and parameters inside
the synchronized region (α ¼ 0.3). (c) The same for parameters
in the thermalizing regime (α ¼ 0.5). Numerical parameters:
h ¼ 0.32, Δh ¼ 0, ϕ ¼ 0.99π, K ¼ 0.3, τ ¼ 0.6, ϵ ¼ 0.05,
Nrand ¼ 28.
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phenomenon. Notice that well inside the synchronized
regime the scaling exponentb is very near to 1 and consistent
with a linear scaling. In order to show the markedly different
behavior in the two regimes, in Fig. 2(b) we provide some
examples of evolution of the order parameter for different
sizes in a casewhere there is synchronization and in Fig. 2(c)
we do the same for a case where the system thermalizes.
Using the scaling properties of td, we can clearly distinguish
in the thermodynamic limitN → ∞ the synchronized regime
from the thermalizing one and we can map a diagram of
the dynamical regimes. We plot this diagram in Fig. 3 for
uniform (ϵ ¼ 0, trivial) and random (ϵ ≠ 0, nontrivial) initial
conditions.
We remark that synchronization is robust and survives

the randomness in the initial state. To better show this
fact, in Fig. 4(a) we plot α� (the critical value separating
synchronized from chaotic and ergodic) vs the randomness
amplitude ϵ for different values of h. Synchronization is
also robust if disorder is added to the model, as it occurs
for example in the Kuramoto model [1,29,30]. We have
checked this, adding disorder to hj. The results are shown
in Fig. 4(b) where we plot the value α� as a function of the
disorder strength Δh.
Let us now move to consider the regularity or chaoticity

properties of the dynamics. The largest Lyapunov exponent
(LLE) gives a measure of how much nearby trajectories
diverge exponentially and is thereby ameasure of chaos [40].
It is defined as LLE ¼ limdð0Þ→0limt→∞ð1=tÞ ln½dðtÞ=dð0Þ�
[dðtÞ is the distance between trajectories at time t].
We compute the LLE using the orbit separation method
(see [40,41]). We consider its average over the random
initial conditions distribution introduced above: LLEϵ≡
hLLEiφj∈½0;2π�;ϵj∈½0;ϵ�. In this waywe fix the same distribution

of the random initial conditions and herewe can compare the
regularity or chaoticity properties of the dynamics with the
synchronization properties.
For N finite we find that LLEϵ is always larger than 0, as

expected for a nonlinear, nonintegrable system, but we can
notice two different behaviors in the limit N → ∞ (in the
numerics we have fixed ϵ ¼ 0.05). There is a regime where
LLEϵ stays finite in the limit N → ∞ and another regime
where our numerics suggests that it scales to 0 as a power
law when N → ∞: LLEϵ ∼ N−γϵ with γϵ > 0 (as it occurs
for the full LLE in the Kuramoto model [42]). We show
some examples in the Supplemental Material [43]. We can
mark the boundary between the two regimes and plot it as a
blue curve in Fig. 3. We see that the regular region of
vanishing LLEϵ is smaller than the synchronized region.
This suggests that there are three regions in the parameter
space for the considered ϵ. Regular synchronization: there
is synchronization and the LLEϵ → 0 in the thermodynamic
limit. In this case the N → ∞ dynamics is essentially
regular in the region of phase space corresponding to the
considered random initial conditions. Chaotic thermal-
ization: here LLEϵ > 0 and there is no synchronization.
The dynamics here is essentially chaotic. Chaotic synchro-
nization: There is chaos in the considered region of phase

FIG. 3. Regions in the parameter space. The red and black
curves separate synchronization from thermalization at infinite
size for different ϵ. The blue curve separates regular behavior
(LLEϵ¼0.05 → 0 in the thermodynamic limit) from chaotic one.
Notice the existence of an intermediate chaotic but nonthermal-
izing region where LLEϵ¼0.05 > 0 in the thermodynamic limit and
there is also synchronization. (Numerical parameters: K ¼ 0.3,
τ ¼ 0.6, ϕ≡ 0.99π, Δh ¼ 0, Nrand ¼ 28.)

(a)

(b)

FIG. 4. Transition point α� vs the initial-state randomness ϵ
[panel (a)] and the randomness in the field hj [panel (b)].
Numerical parameters: K ¼ 0.3, τ ¼ 0.6, ϕ ¼ 0.99π, Nrand ¼
20; for (a) Δh ¼ 0, for (b) h ¼ 0.1.
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space (LLEϵ > 0) but forms of orderlike synchronization
can emerge, in analogy with a related phenomenon of a
driven-dissipative system [44]. We remark that the regu-
larity or chaoticity and synchronization properties of the
dynamics depend on the region of phase space we consider
(given by the value of ϵ). We can see this in Fig. 4(a) where
synchronization disappears beyond a threshold in ϵ.
In conclusion we have found a form of synchronization

of a set of classical Hamiltonian oscillators that are driven
and long-range interacting. Synchronization corresponds to
collective period-doubling oscillations lasting for a time,
which scales as a power law with the system size. The
synchronization is robust to randomness in the Hamiltonian
and the initial state and is connected to the time-crystal
phenomena. Perspectives of future research include the
analysis of quantum effects; indeed there are examples of
quantum spins with long-range interactions that do not
synchronize [45]. It is interesting to understand if this
phenomenon can be interpreted classically or if quantum
effects are crucial. It is also important to consider the role of
thermal noise. The situation is very well known for noisy
dissipative models with short range interactions [46,47]:
noise generically destroys period n tupling for n > 2. Noisy
dissipative long-range systems have yet to be explored from
this perspective. In our specific model we think that thermal
noise would spoil synchronization, but this might not be a
general feature for long-range systems, especially moving
towards the thermodynamic limit.

We acknowledge useful discussions with V. Latora, S.
Marmi, and D. Mukamel. This work was supported in part
by European Union through QUIC project (under Grant
Agreement No. 641122).
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