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The thermodynamic framework of repeated interactions is generalized to an arbitrary open quantum
system in contact with a heat bath. Based on these findings, the theory is then extended to arbitrary
measurements performed on the system. This constitutes a direct experimentally testable framework
in strong coupling quantum thermodynamics. By construction, it provides many quantum stochastic
processes and quantum causal models with a consistent thermodynamic interpretation. The setting can
be further used, for instance, to rigorously investigate the interplay between non-Markovianity and
nonequilibrium thermodynamics.
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Introduction.—Formulating the laws of quantum
thermodynamics forces us to rethink many assumptions,
which are traditionally taken for granted. In particular,
small systems are dominated by fluctuations and, in
general, they do not interact weakly with a Markovian
heat bath. Also the desire to monitor and manipulate
quantum systems adds another layer of complexity due
to the nontrivial effect of quantum measurements.
In this Letter, we present a unified thermodynamic

framework, which overcomes the assumption of a weakly
coupled Markovian heat bath and which allows us to
include nonequilibrium resources and quantum measure-
ments. These nonequilibrium resources are a set of
small, externally prepared systems—called “units” in the
following—which are sequentially put into contact with the
system under study. This setup is known as the “repeated
interaction framework” or “collisional model” and it has
recently attracted much attention in quantum thermody-
namics [1–13]. However, the coupling to an additional
external heat bath (typically present in an experiment) was
mostly ignored, and a weakly coupled Markovian one was
only treated in Refs. [1,7,11]. Based on recent progress in
strong coupling thermodynamics [14,15], we will show that
even the assumption of a weakly coupled macroscopic heat
bath can be completely overcome.
Afterward, following the operational approach to quan-

tum stochastic thermodynamics [16,17], we will show how
to explicitly take into account measurements into the
thermodynamic description. This constitutes a crucial step
in strong coupling quantum thermodynamics, where differ-
ent strategies were used to arrive at many interesting
conclusions [18–41]. However, all strategies rely on a
formalism without any explicit measurements, thus making
them hard to test and compare [42]. In contrast, our theory
is. in principle. immediately testable in a lab as it only
requires one to measure the system. Finally, we rigorously

connect our thermodynamic framework to the field of
quantum non-Markovianity.
Setting.—We start by considering a system S coupled

to a bath B described by the Hamiltonian HSBðλtÞ ¼
HSðλtÞ þ VSB þHB, where λt denotes an externally speci-
fied driving protocol (e.g., a laser field) and VSB denotes the
system-bath interaction Hamiltonian. To this setup we add
the framework of repeated interactions specified by the
following global Hamiltonian:

HtotðλtÞ ¼ HSBðλtÞ þ
Xn
k¼0

VSUðkÞðλtÞ: ð1Þ

Here, VSUðkÞðλtÞ describes the time-dependent coupling
between the system and unit UðkÞ, k ∈ f0;…; ng, which is
designed in such a way that, at most, one unit interacts with
the system at a given time. Specifically, if we denote
the interaction interval between the system and the kth unit
by Ik ≡ ½tk; tkþ1Þ, then VSUðkÞðλtÞ ¼ 0 for all t ∉ Ik. Within
Ik the time dependence as specified by λt is arbitrary.
Furthermore, we temporarily assume the bare unit
Hamiltonian to be degenerate, i.e., HUðkÞ ∼ 1UðkÞ. The
problem is completely specified by fixing the global initial
state, which is assumed to be of the form

ρtotðt−0 Þ ¼ πSBðλ0Þ ⊗ ρUð0Þ ⊗ … ⊗ ρUðnÞ: ð2Þ

Here and in general we use the notation t� to denote the
time t� ϵ in the limit where ϵ > 0 becomes immeasurably
small. Furthermore, πX ¼ e−βHX=ZX denotes the equilib-
rium Gibbs state of some system X at inverse temperature β
(perhaps depending on the value of some driving protocol).
Finally, the initial state of the units is arbitrary but
uncorrelated. A sketch of the present setup is shown in
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Fig. 1. We remark that various extensions are possible, as
discussed at the end of this Letter.
Below we will need the notion of the “Hamiltonian

of mean force,” an old concept [43] (see also
Refs. [14,15,18]), which is defined via the reduced equi-
librium state of a bipartite system XB. Specifically,

π�X ≡ trBfπXBg≡ e−βH
�
X

Z�
X

; Z�
X ≡ ZXB

ZB
: ð3Þ

Note that π�X ≠ πX in general. In addition, H�
X depends

on the inverse temperature β and (possibly) a control
parameter. Notice that the Hamiltonian of mean force for
the system and all units simplifies, as at any given time at
most one unit is physically coupled to the system, e.g., for
t ∈ Ik, H�

SUðnÞðλtÞ ¼ H�
SUðkÞðλtÞ. Here and in general we

use UðnÞ to denote the entire sequence of units from Uð0Þ
to UðnÞ.
The average rate of injected work (the power) has two

contributions. For t ∈ Ik, we define

_WSðtÞ ¼
�∂HSðλtÞ

∂t
�
ðtÞ; ð4Þ

_WSUðkÞðtÞ ¼
�∂VSUðkÞðλtÞ

∂t
�
ðtÞ; ð5Þ

where h…iðtÞ denotes a quantum statistical average at
time t. It follows that the total mechanical work performed
on the system up to time t is

WðtÞ ¼
Z

t

t−
0

ds

�
_WSðsÞ þ

X
k

_WSUðkÞðsÞ
�

¼ hHtotðλtÞiðtÞ − hHtotðλ−0 Þiðt−0 Þ: ð6Þ

Note that this definition of average mechanical work is
widely accepted even in the strong coupling regime
[15,19,20,23,24,26,29,34,35,37,39] as it is directly related
to the change in internal energy of the universe (i.e., the
system, the bath, and all units all together).
Strong coupling repeated interactions framework.—We

start by introducing the basic concept of a nonequilibrium
free energy adapted to the strong coupling regime [14,15],

FXðtÞ≡ trXfρXðtÞ½H�
XðλtÞ þ β−1 ln ρXðtÞ�g: ð7Þ

In the weak coupling limit, where H�
XðλtÞ ≈HXðλtÞ, this

definition reduces to the conventional one. The slight
modification allows us to express the second law even at
strong coupling and even in the presence of the system-unit
interactions in the conventional way (kB ≡ 1),

ΣðtÞ≡ β½WðtÞ − ΔFSUðnÞðtÞ� ≥ 0: ð8Þ

Here, ΣðtÞ denotes the entropy production and
ΔFSUðnÞðtÞ≡ FSUðnÞðtÞ − FSUðnÞðt−0 Þ. Positivity of the sec-
ond law follows by confirming that

ΣðtÞ ¼ D½ρtotðtÞkπtotðλtÞ� −D½ρSUðnÞðtÞkπ�SUðnÞðλtÞ�; ð9Þ

where D½ρkσ� ¼ trfρðln ρ − ln σÞg ≥ 0 is the quantum rel-
ative entropy. Hence, ΣðtÞ is positive by monotonicity of
relative entropy [44,45]. The derivation uses only Eqs. (2)
and (3) and the unitary dynamics, which implies for the
von Neumann entropy S½ρtotð0Þ�≡ −trfρtotð0Þ ln ρtotð0Þg ¼
S½ρtotðtÞ�. It is lengthy, but straightforward, and hence not
displayed here.
Equation (8) corresponds to the second law if we regard

the system and all units as one big system and explicitly
keep their correlations in the description. In practice, it
often turns out that keeping the information about all units
and all their correlations is superfluous (compare also
with the discussion in Ref. [7]). Thus, at time t−nþ1 after
the nth interaction but before the (nþ 1)th interaction,
where the system is decoupled from all units, the following
second law is practically more meaningful:

ΣSðt−nþ1Þ ¼ β

�
Wðt−nþ1Þ − ΔFSðt−nþ1Þ þ T

Xn
k¼0

ΔS½ρUðkÞ�
�

≥ Σðt−nþ1Þ ≥ 0: ð10Þ

Here, we added a subscript S to indicate that this is the
entropy production from the system point of view ignoring
superfluous information about the units. To arrive at

FIG. 1. A system S is in contact with a bath initialized at
temperature T (we do not imply that the bath must be kept at a
well-defined temperature at later times). In a preparation appa-
ratus P units UðkÞ are sequentially produced, which interact with
the system when they enter the shaded gray area and which are
afterward detected in D giving rise to the measurement outcome
rk (properly introduced later on in the text). Note that each unit
can be different in principle. We also remark that the description
of the units does not need to be taken literally in the sense that
they are merely “ancillas” required for a consistent thermo-
dynamic description of a non-Markovian quantum stochastic
process, as introduced later on.
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Eq. (10), we used subadditivity of entropy and HUðkÞ∼
1UðkÞ. In contrast to Eq. (8), it contains only the change in
the marginal von Neumann entropy of the units. The
entropy production per interaction interval In is then
given by

ΣSðt−nþ1Þ − ΣSðt−n Þ
¼ β½Wðt−nþ1Þ −Wðt−n Þ − FSðt−nþ1Þ þ FSðt−n Þ�
þ fS½ρUðnÞðt−nþ1Þ� − S½ρUðnÞðt−n Þ�g: ð11Þ

It is the strong coupling generalization of the second law in
the repeated interaction framework, see Eq. (49) in Ref. [7].
Interestingly, in contrast to the Markovian weak coupling
situation, we cannot ensure the positivity of this expression.
This is similar to the classical case [15] and we will connect
it to the notion of non-Markovianity later on. But first we
will advance conceptually by introducing explicit measure-
ments in the description.
Quantum stochastic thermodynamics at strong

coupling.—We consider the case where the experimenter
measures the state of the unit after the interaction with the
system, as indicated in Fig. 1 [i.e., VSUðnÞðλtÞ ¼ 0 at the
time t of the measurement]. By doing so, we can gather
valuable information about the state of the system. In a
moment, we will also show that this allows us to implement
arbitrary generalized measurements on the system and that
the resulting theory can be fruitfully linked to the study of
quantum stochastic processes and quantum causal models.
Mathematically, we denote the measurement result of the

kth unit by rk and associate a positive operator Prk to it,
which fulfills the normalization condition

P
rk P

2
rk ¼ 1UðkÞ.

The state of the unit then changes according to the map
PrkρUðkÞ ≡ PrkρUðkÞPrk ≡ ρ̃UðkÞðrkÞ. Notice that ρ̃UðkÞðrkÞ
is a subnormalized state with the probability pðrkÞ ¼
trUðkÞfρ̃UðkÞðrkÞg as its norm. After multiple units were
subjected to their respective measurements, giving results
rn ≡ ðrn;…; r1; r0Þ, the global subnormalized state reads

ρ̃totðrn; t−nþ1Þ ¼
�Yn

k¼0

PrkUkþ1;k

�
ρtotðt−0 Þ: ð12Þ

Here, Ukþ1;k describes the global unitary evolution from t−k
(shortly before the kth unit starts interacting with the
system) to t−kþ1. Because the measurement always acts
after the interaction, we can also write

ρ̃totðrn; t−nþ1Þ ¼
�Yn

k¼0

Prk

�
ρtotðt−nþ1Þ; ð13Þ

where ρtotðt−nþ1Þ ¼ Unþ1;0ρtotðt−0 Þ is the global time-
evolved state without any measurements. This allows us
to confirm the useful relation

X
rn

ρ̃SBðrn; t−nþ1Þ ¼ ρSBðt−nþ1Þ; ð14Þ

i.e., the average system-bath state does not change due to
the measurements. This is not true for the units.
Inspired by Ref. [16], we now introduce the following

thermodynamic definitions along a single trajectory char-
acterized by the measurement results rn. First, for t ∈ In,
the stochastic power _wSðrn; tÞ and _wSUðnÞðrn−1; tÞ are
simply obtained from Eqs. (4) and (5) by replacing the
average over the unconditional state ρSUðnÞðtÞ with an
average over the conditional state ρSUðnÞðrn; tÞ. Notice
that _wSUðnÞðrn−1; tÞ does not depend on the last measure-
ment outcome rn because, by construction, the measure-
ment Prn acts after the nth unit has interacted with the
system. Therefore, together with Eq. (14) we immediately
obtain the relations

P
rn pðrnÞ _wSðrn; tÞ ¼ _WSðtÞ andP

rn pðrnÞ _wSUðnÞðrn−1; tÞ ¼ _WSUðnÞðtÞ. Second, we have
to generalize the nonequilibrium free energy to the sto-
chastic case, which becomes

fSUðnÞðrn; tÞ≡ hH�
SUðnÞðλtÞiðrn; tÞ

þ Tf−S½ρSUðnÞðrn; tÞ� þ lnpðrnÞg; ð15Þ
where h…iðrn; tÞ denotes an average with respect to the
conditional state. An essential difference compared to
definition (7) is the appearance of the stochastic entropy
− lnpðrnÞ associated with the measurement results
obtained with probability pðrnÞ ¼ trfρ̃totðrn; tÞg. A similar
but not identical construction is used in classical stochastic
thermodynamics [46] (compare with the discussion in
Refs. [16,17]). In contrast to the stochastic work, we have,
in general,

P
rn pðrnÞfSUðnÞðrn; tÞ ≠ FSUðnÞðtÞ. Finally, we

introduce the stochastic entropy production

σðrn; tÞ≡ β½wðrn; tÞ − ΔfSUðnÞðrn; tÞ�: ð16Þ

As in classical stochastic thermodynamics, it can be
negative along a single trajectory [47,48]. However, we
will now prove that, on average,

P
rn pðrnÞσðrn; tÞ ≥ 0,

which demonstrates the thermodynamic consistency of our
strong coupling quantum stochastic framework.
As a consequence of Eq. (14) and our previously derived

second law (8), we confirm that

X
rn

pðrnÞσðrn; tÞ − ΣðtÞ

¼
X
rn

pðrnÞfS½ρSUðnÞðrn; tÞ� − lnpðrnÞg − S½ρSUðnÞðtÞ�:

ð17Þ

This quantifies the change in informational entropy of all
constituents (system, units, and the classical memory) due
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to the big joint measurement (13). Its positivity follows
from the lemma in Ref. [16], which simply combines
Theorem 11 of Ref. [49] and Theorem 11.10 of Ref. [50]
and which can be interpreted as the second law for a
quantum measurement. Hence, we conclude

X
rn

pðrnÞσðrn; tÞ ≥ ΣðtÞ ≥ 0: ð18Þ

As before, the (averaged) stochastic entropy production
σðrn; tÞ contains the information about all the correlations
in the units, which is typically not needed. Using sub-
additivity of entropy, it is again possible to arrive at
expressions similar to Eq. (10). Note that, depending on
the experimental situation, one could decide to not only
discard information about the unit correlations, but also
about the measurement results rn.
This concludes the formal part of the Letter, where we

have introduced a consistent notion of work, nonequilibrium
free energy, and entropy production along a single run of an
experiment regardless of any details of the system-bath
coupling. It is instructive to connect the present picture to the
theory of quantum causal models and quantum stochastic
processes. If we consider the limit of an instantaneous
system-unit interaction, ideally described by a coupling of
the form VSUðkÞðλtÞ ¼ vkδðt − tkÞ, we can write the system-
bath dynamics as

ρ̃SBðrn; t−nþ1Þ ¼
�Yn

k¼0

USB
kþ1;kArk

�
ρSBðt−0 Þ: ð19Þ

Here, USB
kþ1;k is the unitary time evolution generated by

HSBðλtÞ and the completely positive map Ark is defined via
its action ArkρS ¼ trUfPrk ½e−ivk=ℏρSρUðkÞeivk=ℏ�g on an
arbitrary system state ρS. In this context, Ark is also known
as an “instrument” describing the most general state trans-
formation possible in quantum mechanics [51,52]. The
application of a set of instruments Ar0 ;…;Arn to an open
quantum system defines a general quantum stochastic
process (or quantum causal model), which can be formally
represented by a “quantum comb” or “process tensor”
[53–58]. The sole difference compared to the most general
case is that we do not allow for real-time feedback control;
i.e., the instruments Ark are not allowed to depend on the
previous results rk−1, otherwise Eq. (14) would no longer be
true. Whether the present framework can be extended to
arbitrary real-time feedback control as in the Markovian
case [16,17] remains an open question.
Thermodynamic signatures of non-Markovianity.—

We now turn toward an important application linking the
field of quantum thermodynamics and quantum non-
Markovianity [59,60] in a rigorous way. As recognized
below Eq. (11), at strong coupling we cannot ensure that
the entropy production is positive in every time interval

½tl; tkÞ for tl > tk > t0. There have been repeated claims
in the literature that negative entropy production rates
indicate non-Markovianity [61–66]. Doubts were raised
in Refs. [15], since the definitions for entropy production
rates used in Refs. [61–66] do not yield an overall positive
entropy production when integrated from the initial time t0
to any final time t > t0. Moreover, they can be even
negative for Markovian dynamics [15].
On the other hand, for a suitable notion of entropy

production based on the Hamiltonian of mean force,
progress was achieved for classical dynamics [15].
Therein, the situation of a strongly coupled system pre-
pared in an arbitrary nonequilibrium state was considered
(no repeated interactions were present). Then, it was shown
that Markovian dynamics necessarily imply a positive
entropy production rate if the system is undriven (i.e.,
λt ¼ constant). In our quantum formalism, the system is
initially in equilibrium such that its state does not change
when undriven and left on its own. However, we can link
the present picture to the classical case by realizing that we
can use the very first unit Uð0Þ to prepare the system in an
arbitrary nonequilibrium state via a short control operation.
This preparation procedure has a thermodynamic cost
captured by the always positive entropy production
ΣSðtÞ ¼ βWSUðtÞ − βΔFSðtÞ − βΔS½ρUð0Þ� ≥ 0 [compare
with Eq. (10)]. After the system-unit interaction, the system
is left on its own and the entropy production in between any
two times t2 > t1 > t0 reads

ΣSðt2Þ − ΣSðt1Þ ¼ −β½FSðt2Þ − FSðt1Þ�
¼ D½ρSðt1Þkπ�S� −D½ρSðt2Þkπ�S�: ð20Þ

This quantifies the dissipation associated with the relaxa-
tion dynamics of the system. Equation (20) is positive if the
dynamics are Markovian and if π�S is a steady state of the
dynamics at any time t. Interestingly, the latter point can be
shown rigorously based on the definition of Markovianity
from Ref. [67], which is adapted to the situation of a
general quantum stochastic process as used here. This is
proven in the Supplemental Material [68] (which contains
Ref. [69]). Thus, ΣSðt2Þ − ΣSðt1Þ ≥ 0 for a Markov process
in complete analogy to the classical result [15]. This opens
up the door to investigate the interplay between entropy
production and non-Markovianity in a mathematically and
thermodynamically rigorous sense for quantum systems.
Further applications.—The ability to analyze general

non-Markovian quantum processes from a thermodynamic
perspective will find applications in various areas. One
example is sequential quantummetrology [70]. Specifically,
a particularly intriguing parameter to estimate is the temper-
ature of a system. Much progress has been achieved
to understand it from the perspective of metrology [71],
but the thermodynamic costs of thermometry have not
yet been explored. With the recent progress in the design
of optimal quantum probes [72] and strong coupling
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thermometry [73], the present Letter opens up the possibility
to thermodynamically analyze many scenarios in metrology
and thermometry. Furthermore, recent progress shows
how to unambiguously detect quantum features in quantum
stochastic processes [74–76]. Since quantum thermody-
namics is still in search of clear observable quantum effects
induced by coherence [77], the present Letterwill allowus to
rigorously address such questions. Furthermore, originally
used to understand Nobel-prize-winning experiments
[78,79] in quantum optics from a thermodynamic perspec-
tive [16], the present framework can be used to exploremore
general cases where the system is not a high-quality cavity
and has substantial losses or is coupled to other cavities.
Also the units do not have to be identical, which opens up
the possibility to, e.g., thermodynamically analyze single-
photon distillation experiments [80], where an atom in a
cavity is first probed by a weak coherent pulse (unit 1)
followed by ameasurement (modeled by unit 2) to herald the
photon distillation. Quite generally, the present setup is even
relevant for experiments in theMarkovian regime, if detailed
control about all system parts is not possible. Finally, the
present framework can be combined with the traditional
picture of scattering theory and, following Ref. [7], it allows
us to investigateMaxwell’s demon and Landauer’s principle
at strong coupling.
Extensions.—As detailed in the Supplemental Material

[68], the present framework can be extended into various
directions: the Hamiltonian of the units does not need to be
degenerate, the initial state of the units can be correlated,
and the general identities (8), (10), and (18) still hold in the
case where the system-bath coupling is time dependent. In
the last case, however, the theory is no longer “operational”
in the sense that explicit knowledge about the state of the
bath is necessary, which is hardly accessible. Similarly, we
show in the Supplemental Material [68] how to treat
multiple heat baths. Unfortunately, also in that case the
state of the system and units does not suffice to have access
to all thermodynamic quantities [81].
Concluding remarks.—The present contribution estab-

lishes a consistent thermodynamic framework—even along
a single trajectory recorded in an experiment—for a system
in contact with an arbitrary bath and additionally subjected
to arbitrary nonequilibrium resources interacting one by
one with the system. This pushes the applicability of
nonequilibrium thermodynamics far beyond its traditional
scope. Furthermore, the present work also demonstrates
how quantum stochastic thermodynamics departs from
its classical version in the strong coupling regime
[14,15,82–84]. While the basic concepts at the unmeasured
level are similar, any possible measurement strategy has a
nontrivial influence on the description in the quantum
regime, even on average. For instance, in general, there is a
strict inequality on the left-hand side of Eq. (18). This is not
a deficiency of our theory, but a necessary ingredient,
which can be already recognized at the level of the work

statistics [85]. Quantum stochastic thermodynamics is more
than a mere extension of its classical counterpart. The
present operational approach is, however, flexible enough
to reproduce the unmeasured picture: it is recovered by
choosing the trivial but legitimate measurement operator
Prk ¼ 1UðkÞ, i.e., the identity. Then, the stochastic entropy
production σðrnÞ reduces to Σ.
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