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In contrast with Anderson localization where a genuine localization is observed in real space, the many-
body localization (MBL) problem is much less understood in Hilbert space, the support of the eigenstates.
In this Letter, using exact diagonalization techniques we address the ergodicity properties in the underlying
N -dimensional complex networks spanned by various computational bases for up to L ¼ 24 spin-1=2
particles (i.e., Hilbert space of size N ≃ 2.7 × 106). We report fully ergodic eigenstates in the delocalized
phase (irrespective of the computational basis), while the MBL regime features a generically (basis-
dependent) multifractal behavior, delocalized but nonergodic. The MBL transition is signaled by a
nonuniversal jump of the multifractal dimensions.
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Introduction.—Anderson localization (AL) [1,2] is a
fundamental phenomenon where transport is hindered by
disorder in quantum systems composed of free particles.
When interactions between the particles are added, locali-
zation tends to be prohibited and thermalization is favored.
The eigenstate thermalization hypothesis (ETH) [3,4],
which provides a theoretical understanding of how thermal
equilibrium is encoded at the level of individual many-body
eigenfunctions, applies generically to most interacting
systems (with the important exception of integrable mod-
els). It is thus quite remarkable that disordered quantum
interacting systems can still show an absence of transport
and thermalization in the form of many-body localization
(MBL) [5,6], a topic that has attracted considerable interest
recently (see reviews Refs. [7–10]). Besides arrested trans-
port, MBL features several striking properties, e.g., anoma-
lously small (area-law) entanglement [11], emergent
integrability and Poisson spectral statistics [12,13], and
very slow (logarithmic) entanglement spreading [14–16],
some of which expose the differences between MBL and
AL. Numerical simulations of 1D lattice models [17,18],
analytical rigorous proofs [19], and effective localized-bits
(l-bits) models [12,13,20,21] have been instrumental in
understanding these properties of the MBL phase.
However, several important questions remain open

regarding the MBL-ETH transition and the nature of
eigenstates. This contrasts with the much-better understood
case of AL where the spatial extension of single-particle
orbitals is known to display multifractality at criticality on
finite-dimensional lattices, a behavior which characterizes
the transition and its underlying field-theoretical descrip-
tion [2]. In the MBL context on the other hand, the behavior
of many-body eigenstates in the Hilbert space is not firmly
established [18,22–27]. We aim at addressing three open
issues: (i) the possible existence of an intermediate non-
ergodic delocalized phase in the ETH phase [23,24,26];

(ii) the wave functions properties in the MBL regime
sometimes described as Fock-space localized [26,28],
while perturbative [29,30] and numerical [18] results
indicate multifractality; and (iii) a consistent description
of the critical regime.
The central quantities of interest in our work are the

participation entropies (PE) Sq, derived from the qth
moments of a wave function jΨi expressed in a given basis:

jΨi ¼
XN
α¼1

ψαjαi and Sq ¼
1

1 − q
ln

�XN
α¼1

jψαj2q
�
:

ð1Þ

In the Shannon limit S1 ¼ −
P

α jψαj2 ln jψαj2, while the
case q ¼ 2 recovers the usual inverse participation (IPR)
[31] with S2 ¼ − lnðIPRÞ. Let us first describe the possible
leading asymptotic behaviors for Sq with the support size
N . For a perfectly delocalized state Sq ¼ lnN . In contrast,
if a state is localized on a finite set, one gets Sq ¼ const,
as observed for AL. In an intermediate situation, wave
functions are extended but nonergodic, with Sq ¼ Dq lnN
(Dq < 1 are q-dependent multifractal dimensions).
In this Letter, we inspect many-body eigenstates in the

Hilbert space by studying Dq across the ETH-MBL
transition for model Eq. (2). Building on large-scale
numerics for the most relevant basis sets fjαig, we provide
a complete scaling analysis describing both phases and the
critical point, which captures finite-size effects. We con-
clude for full ergodicity (Dq ¼ 1) for ETH, generic multi-
fractality in the entire MBL regime, and a nonuniversal
jump of Dq at the transition, as sketched in Fig. 1 [32].
MBL as a complex network Anderson problem.—We

focus on the random-field XXZ S ¼ 1
2
chain model
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H ¼
XL
i¼1

�
ΔSziS

z
iþ1 − hiS

z
i þ

1

2
ðSþi S−iþ1 þ S−i S

þ
iþ1Þ

�
; ð2Þ

with periodic boundary conditions and hi randomly drawn
from a uniform distribution ½−h; h�. Equation (2) is equiv-
alent [33] to interacting spinless fermions in a random
potential. This system has been intensively studied
[11,14,17,18,22,36,37] and its phase diagram is well
known for the case Δ ¼ 1 with a critical disorder estimated
to be hc ¼ 3.7ð2Þ in the middle of the many-body spectrum
fEg such that ϵ ¼ ðE − EminÞ=ðEmax − EminÞ ¼ 0.5. This
Hamiltonian can be recast as a single particle Anderson
problem of the general form

H ¼
X
α

μαjαihαj þ
X
hαβi

tαβjαihβj; ð3Þ

in a given basis fjαig. Of course, the localization properties
measured by the PE depend crucially on the choice of
fjαig. We focus on two bases: spin configurations fjαigS
and Fock basis fjαigF, which we argue are the most
relevant for the model Eq. (2): (i) both bases diagonalizeH
in specific limits where localization is well understood
(the noninteracting limitΔ ¼ 0 for fjαigF, the limit h → ∞
for fjαigS) and are thus used as a starting point for the
l-bits construction or efficient numerical simulations of
MBL, (ii) they implement the U(1) conservation rule
(particle number or magnetization conservation) of the
model, and (iii) H is sparse in both bases: an ingredient
which eases numerical diagonalization and may favor
ergodicity breaking.
Spin configuration basis: The basis fjαigS uses the

local projection of Szi , i.e., jαi ¼ j↑↓↑;…i. We restrict
the study to the zero magnetization sector

P
i S

z
i ¼ 0

(half-filling for fermions) of dimension N ¼ ð L
L=2Þ≃

2L=
ffiffiffiffi
L

p
. In the spin configuration basis, Eq. (2) becomes

a hopping problem Eq. (3) with disordered on site energies

μα ¼ hαjPiΔSzi S
z
iþ1 − hiS

z
i jαi, and constant hopping

terms tαβ ¼ 1=2 [allowing tunneling between neighboring
states hαβi connected by spin-flip terms of Eq. (2)]. As the
site-dependent connectivity z̄ ≈ L=2 grows faster with
system size L than the average on site disorder strength
σμ ∼ h

ffiffiffiffi
L

p
, general arguments would prohibit genuine AL

in this complex network (note however the strong corre-
lations of the potential between neighboring sites).
Fock basis: fjαigF are many-body states built from

noninteracting localized orbitals that diagonalize the free-
fermion partH − Δ

P
i S

z
i S

z
iþ1 of Eq. (2). On site potentials

μα are the sum of the noninteracting orbital energies
corrected by the Hartree-Fock term, and off-diagonal
hoppings tαβ are built from the interaction terms
[11,33,38]. Viewing MBL as an Anderson problem on
graphs defined by these Fock states has been promoted in
very early works [5,6,39]. Nevertheless, the hopping
problem expressed in fjαigF is qualitatively different than
from in fjαigS. While diagonal terms have similar behav-
iors, there is a much larger number of nonzero matrix
elements zαβ between Fock states, which is constant over
the graph: zαβ ¼ 1

4
fðL=2Þ½ðL=2Þ − 1�g2 þ ðL2=4Þ (in theP

i S
z
i ¼ 0 sector). Moreover, hoppings tαβ are not constant

but random, both in sign and magnitude [33].
Participation entropies: large-scale numerics.—

Eigenstates of Eq. (2) are extracted from full and shift-
invert subset [40] diagonalization, focusing on high-energy
states (ϵ ¼ 0.5) on various system sizes, ranging from L ¼
8 spins (with N ¼ 70) up to L ¼ 24 (N ¼ 2705432).
Disorder average is performed over many independent
samples, typically tens of thousand for the smallest sizes
L ≤ 16, and several hundreds for the largest samples 18 ≤
L ≤ 24 [41]. We fix Δ ¼ 1.
We first discuss the scaling with Hilbert space size N of

the disorder-average PE Sq defined by Eq. (1) and shown in
Fig. 2 for both Fock and configuration spaces for a few
representative values of the disorder. In the ETH phase
[Figs. 2(a) and 2(b)], low disorder data follow a purely
ergodic scaling of the form Sq ¼ lnN þ bq with bq < 0

for both Fock and configuration spaces. Upon increasing h
a curvature develops, indicating that an asymptotic scaling
regime might be eventually reached for larger N , as
exemplified by h ¼ 2.6 and h ¼ 3.2 data. In the MBL
regime [Figs. 2(c) and 2(d)] with q ¼ 1, 2 at h ¼ 5, both
bases exhibit a delocalized behavior Sq ¼ Dq lnN þ bq
with a q- and basis-dependent multifractal dimension
Dq < 1 and a correction bq > 0.
Very interestingly, bq changes sign (negative for ETH

and positive for MBL) as seen in Fig. 3 where a crossing
point in Sq= lnN appears in the vicinity of the critical
disorder strength hc ∼ 3.8. Crossings are equally observed
for Fock and configuration spaces in Figs. 3(a), 3(d),
and 3(e). This effect is also clearly visible from the
distributions PðSq= lnN Þ shown in Figs. 3(b) and 3(c)

FIG. 1. Schematic picture of the multifractal properties of
eigenstates in Fock and spin configuration bases across the
MBL transition for Eq. (2). Two typical eigenstates of Eq. (2)
on a small L ¼ 14 system for ETH (h ¼ 0.5, blue) and MBL
(h ¼ 10, green) regimes are graphically represented, with circle
sizes proportional to jψαj2 in the spin configuration basis.
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where we observe strikingly distinct behaviors on both
sides of the transition, with qualitatively different finite size
effects and opposite skewness. As Sq= lnN is restricted to
the interval [0, 1], the distributions at small disorder slowly
converge (from below) towards unity with system size.
Conversely, in the MBL regime, rare events tails extend
above the average while distributions shrink with system
size (with a variance vanishing as a power law [33]),
thus leading to positive finite size corrections. As argued
below, the negative constant correction bq in the ETH
phase can be physically related to a nonergodicity volume
Λq ¼ expð−bqÞ. In contrast, the positive value of bq in the

MBL regime seems to be rooted in rare events showing up
in positive skewness distributions.
Scaling analysis.—We turn to a finite size scaling

analysis of PE across the MBL transition. Figure 4 shows
results for q ¼ 2 in the two basis where very good collapses
can be obtained using the following ansatz [42], inspired by
a recent investigation [43] of the Anderson problem on
random graphs:

SqðN Þ − Sq;cðN Þ ¼
8<
:

GvolðNΛq
Þ if h < hc

GlinðlnNξq Þ if h > hc:
ð4Þ

Note that we first subtracted Sq;cðN Þ the critical PE at
hc ¼ 3.8 [44]. In the ETH regime (top panels), a volumic
scaling GvolðN =ΛÞ yields an excellent description of the
crossover with Λ interpreted as a nonergodicity volume
[43]. When the Hilbert space dimension N ≫ Λ, full
ergodicity is recovered with Sq ¼ lnN − ð1 −Dq;cÞ lnΛ,
Dq;c being the multifractal dimension at the transition,
while the critical behavior Sq → Sq;c is recovered below
the nonergodicity volume N ≪ Λ. This volumic scaling
is found to be universal as it occurs for both Fock and
spin basis, with a nonergodicity volume diverging very
fast as the transition is approached: lnΛ ∼ ðhc − hÞ−a
[insets in Fig. 4(a)],with a ≈ 0.45 [45]. An analogous
volume law with a ¼ 0.5 was reported [43,46] for
the Anderson problem on random regular graphs,
in agreement with analytical predictions in infinite
dimensions [47–49].
Contrasting with ETH, data in the MBL regime rather

follow a linear scaling function GlinðlnN =ξÞ with a
universal form

FIG. 2. Finite size scaling of the disorder average PEs Sq shown
for both Fock [left: (a), (c)] and configuration spaces [right: (b),
(d)] and a few representative values of disorder strength h in both
ETH (a), (b) and MBL (c), (d) regimes for q ¼ 1, 2. Lines are of
the form Dq lnN þ bq with Dq ¼ 1 and bq < 0 in the ETH
regime (guides to the eye), while Dq < 1 and bq > 0 in the MBL
regime (fits).

FIG. 3. Scaled PE Sq= lnN plotted against disorder h in both Fock (a) and configuration spaces (d), (e). Crossing points signal a sign
change of the subleading correction bq in the PE scalings Dq lnN þ bq, which occurs in the vicinity of the ETH-MBL transition point
hc ∼ 3.8 (gray shaded region). Insets (b), (c) show histograms PðSFock1 = lnN Þ of PE in the Fock basis.
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Sq;MBL − Sq;c ¼ −Dq;c
lnN
ξ

; ð5Þ

again yielding a very good data collapse (bottom panels of
Fig. 4). The length scale ξ, extracted from the best collapse,
is shown in panels (b) of Fig. 4 as a function of the distance
to criticality h − hc, where again hc ¼ 3.8 has been fixed.
In Eq. (5), ξ lies in the range (1, þ∞) which guarantees
Sq;MBL to remain positive in the limit lnN ≫ ξ where the
leading term follows Sq ¼ Dq;cð1 − 1=ξÞ lnN . In the other
limit lnN ≪ ξ, one retrieves the critical scaling. Close to
criticality, we observe a divergence of the length scale
ξ ∝ ðh − hcÞ−a0 , with a0 ≈ 0.76.
It is crucial to make a distinction between random graphs

which display AL at large disorder (see for instance
Refs. [43,46,50]), and the present many-body problem
where instead, multifractality is present in the entire
MBL phase ∀ h ≥ hc. We clearly observe [33]
Dq;MBLðh ≫ hcÞ ∝ 1=h, thus vanishing only in the infinite
disorder limit, in agreement with recent results [30]. This
behavior can be accounted for by simple strong disorder
arguments [33]. Numerical data further suggest that this
form persists almost down to the critical point such
that Dq;MBLðhÞ ≃Dq;cðhc=hÞ.
Discussion.—Finite-size effects might affect the esti-

mates of MBL critical point and exponents [51,52].
However our scaling analysis carefully accounts for them
(Fig. 4) and strongly supports the following scenario across
the ETH-MBL transition for the standard model Eq. (2).

(i) Eigenstates are generically ergodic, with no multi-
fractality over the entire ETH phase (Dq ¼ 1) thus remov-
ing the possibility for an intermediate nonergodic state with
Dq < 1 in the model Eq. (2). (ii) The entire MBL regime
harbors delocalized nonergodic eigenstates with disorder
and basis dependent multifractal dimensions, only vanish-
ing in the infinite disorder limit. (iii) The ETH-MBL
transition point belongs to the same nonergodic regime,
with a jump of the multifractal dimension Dq < 1 at the
transition, in agreement with recent predictions for a
nonthermal critical point [53–57]. ETH-MBL criticality
displays two radically different scalings across the tran-
sition for eigenstates extension through the Hilbert space: a
volumic law GvolðN =ΛÞ for ETH with an emergent non-
ergodicity volume Λ, diverging at the transition, and a
linear scaling GlinðlnN =ξÞ in the MBL regime. This is
clearly compatible with a second-order critical point, but
with an unsymmetrical nature, as also recently highlighted
in Refs. [53,54,56,58]. To which extent ξ is related to a
localization length in real space remains to be understood.
We do not see signs of a putative second MBL phase
[57,59] in our multifractal analysis which is not directly
comparable with the (real-space) MBL multifractality
proposed by a renormalization group study [58].
Our results on multifractality of the MBL phase have the

following consequences on other approaches for the MBL
problem: (i) they give the correct scaling behavior for
variational computational approaches to eigenstates based
on the two basis at hand, (ii) put constraints for putative

FIG. 4. Scaling curves for the PE following Eq. (4) across the full ETH-MBL regimes with varying disorder strengths (colored
symbols). Data for q ¼ 2 are displayed for both Fock (left) and configuration (right) spaces, after subtracting the critical PE data S2;c
taken at h ¼ 3.8. For h < hc (top panels) a volumic scaling GvolðN =ΛÞ gives the best data collapse. The nonergodicity volumes Λ
plotted in insets (a) show similar (universal) divergences lnΛ ∼ ðhc − hÞ−a with a ∼ 0.45 for Fock (q ¼ 2) and configuration (q ¼ 1 and
q ¼ 2) spaces, as indicated on the plot. Bottom panels show data collapses in the MBL regime for h > hc following a linear scaling
GlinðlnN =ξÞ. The length scale ξ plotted in insets (b) diverges as ðh − hcÞ−a0 with a0 ∼ 0.76. Note that small deviations to scaling Eq. (5)
are expected due to nonuniversal subleading constant corrections bq > 0, but are difficult to observe in this strong disorder regime.
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theories of the critical point (in the same spirit as the
multifractal spectrum does for AL [2]), and (iii) provide a
new phenomenology, clearly different from the Anderson
problem on random graphs or Cayley trees [5,39,43,46,
50,60–66], thus challenging possible analogies.
Other perspectives are also opened up by the present

Letter, such as connecting with the anomalous slow
dynamics observed [25,67–74] in a large part of the
ETH phase, e.g., by considering multifractal properties
of operators [75]. We note that while rare-regions effects
[76] can induce such subdiffusive transport, much less
dramatic consequences are expected for eigenstates
(reflecting “infinite-time” physics) [77]. Another extension
will consist in testing for universal behavior by considering
other models with a MBL transition or disturbing the
computational basis [78]. Finally, our results pave the way
for a better control of decimation approaches in configu-
ration [79] or Fock space [38], as well as for a recently
proposed Hilbert space percolation approach [80,81] to the
MBL transition.
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