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Open quantum systems can have exceptional points (EPs), degeneracies where both eigenvalues and
eigenvectors coalesce. Recently, it has been proposed and demonstrated that EPs can enhance the
performance of sensors in terms of amplification of a detected signal. However, typically amplification of
signals also increases the system noise, and it has not yet been shown that an EP sensor can have improved
signal-to-noise performance. We develop a quantum noise theory to calculate the signal-to-noise
performance of an EP sensor. We use the quantum Fisher information to extract a lower bound for the
signal-to-noise ratio (SNR) and show that parametrically improved SNR is possible. Finally, we construct a
specific experimental protocol for sensing using an EP amplifier near its lasing threshold and heterodyne
signal detection that achieves the optimal scaling predicted by the Fisher bound. Our results can be
generalized to higher order EPs for any bosonic non-Hermitian system with linear interactions.
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Introduction.—A distinct feature of physical systems
described by non-Hermitian operators are exceptional
points (EPs), degeneracies at which not only eigenvalues
but also the eigenstates coalesce [1–4] enhancing the
repulsion and leading to a larger frequency splitting when
detuned. EPs have been extensively discussed in the
context of generalizing the standard quantum theory to
include non-Hermitian Hamiltonians [5]. However even
within the conventional quantum framework, the effect of
EPs in open systems can already be studied, either by
looking at resonant scattering or by treating unobserved
degrees of freedom as lossy or amplifying reservoirs,
as reviewed in [6]. Many interesting effects of EPs have
been studied in electromagnetic or optomechanical systems
[7–13]; often these systems have parity-time symmetry
[8,14–17], although this symmetry is not essential to the
existence of EPs.
One intriguing application of EPs is to enhance the

performance of sensors, which has been theoretically
proposed [18–20] and experimentally demonstrated using
optical microring resonators [21,22]. In these sensors the
small parameter ϵ to be estimated acts as a perturbation to the
systemHamiltonian,which is non-Hermitian due to intrinsic
loss. For example, in optical-cavity systems, thermal effects
or cavity shape deformation shift the complex resonant
frequencies of the cavity, which can bemeasured by locating
the centers and widths of the peaks in the frequency
spectrum of the scattered output signal. If the unperturbed
Hamiltonian is not at an EP initially, those frequencies will

be shifted by amounts proportional to ϵ. Now we create an
EP by tuning the initial Hamiltonian with additional non-
Hermitian dynamics (e.g., extra lossy or gain channels),
bringing two or more resonances to degeneracy without
imposing any additional symmetries. The perturbation
theory of EPs leads to a novel phenomenon: if n resonances
have coalesced at an n − 1th-order EP, then the eigenfre-
quency difference δω of two of the perturbed resonances is
proportional to ϵ1=n. Therefore, the sensitivity of the splitting
to the perturbative strength dðδωÞ=dϵ ∝ ϵð1−nÞ=n, which
tends to infinity when ϵ tends to 0, is parametrically larger
than for non-EP systems, and hence proposed as a promising
approach for enhancing sensing precision [18–20]. This
type of enhanced frequency sensitivity was demonstrated in
the microring experiments [21,22], where fabrication and
fine-parameter tuning of EP are already available in
laboratories.
But there has been no systematic analysis of the effect on

the noise and the signal-to-noise ratio (SNR) of a sensor
operating in the vicinity of an EP. According to quantum
noise theory [23], the gain (and loss) introduced by non-
Hermitian dynamics will unavoidably generate additional
noise. For example, in the context of the bounded modes of
cavities with extrinsic pumping, the perturbation near EP
amplifies both the mode amplitude and the added quantum
noise to the same degree, making it dubious that the SNR
will be enhanced [24] (assuming the sensor is operating
near the quantum noise limit, and is not dominated by
extrinsic noise sources). In quantum sensing, the close
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relation between SNR and the ultimate precision threshold
has been pointed out [25]. Therefore, in evaluating the
efficacy of EP sensors, it is crucial to understand the
behavior of both signal and noise near an EP.
In this Letter, we address the following questions:

(1) Can operating near an EP enhance the SNR of a
sensor? (2) What is the maximal precision (in terms of
SNR) of EP sensing schemes? (3) How can we design a
scheme to achieve this ultimate precision? To answer these
questions, we first apply quantum noise theory [23] to
calculate the amplitude and covariance matrix associated
with the outputs of an EP sensor, then calculate the
quantum Fisher information of the output state and obtain
the Cramér-Rao bound for the parameter estimation.
Finally we explicitly construct an amplifying EP sensor
achieving this optimal sensitivity scaling, using multimode
heterodyne detection (i.e., measuring a specific vector μout
of the scattered output signal, known in optics as quad-
ratures), ideally at the lasing threshold. Our scheme does
not use frequency splitting near an EP, but rather the
amplitude change (i.e., dμout=dϵ) of an amplified super-
position of output quadratures, which is our output signal,
near the lasing frequency, with the system tuned to the
lasing threshold, i.e., in the parameter regime where the
imaginary part of the resonant eigenfrequency vanishes.
The conventional defintion of SNR is compatible only

with scalar-form signals. Because of the vector-form output
signal in our system, we modify the conventional definition
to a multivariate form, namely ðdμout=dϵÞTV−1

outðdμout=dϵÞ
with Vout the covariance matrix of the output signal μout.
For convenience we will also call this modified measure the
SNR [26]. Later, we will show its close relation to the
quantum Fisher information, analogous to what is known in
quantum sensing [25]. The results can be generalized to
higher-order EPs for any bosonic non-Hermitian system
with linear interactions, i.e., involving only Gaussian
processes [27]. There are already studies on open system
quantum metrology where decoherence is typically mod-
eled in the form of Lindbladian master equations or
completely positive-and-trace-preserving maps, but these
have not given a clear and explicit treatment for non-
Hermitian systems [28–32]. The methods of quantum
metrology are also routinely applied to the optimization
of sensors [33–35], but these studies are not focused on
noisy Gaussian quantum systems.
Non-Hermitian dynamics and open quantum systems.—

We define a non-Hermitian Hamiltonian to characterize the
open system [6]. A generic model is shown in Fig. 1(a); we
have coupled cavities with two resonant modes a1 and a2,
with the non-Hermitian Hamiltonian (setting ℏ ¼ 1)

Ĥ ¼ ðω1 þ ϵÞâ†1â1 þ ðω2 þ ϵÞâ†2â2 þ gðâ†1â2 þ H:c:Þ
− i

γ1
2
â†1â1 þ i

γ2
2
â†2â2; ð1Þ

where the total loss/gain rates of modes 1, 2 are γ1, γ2 and g
is the intercavity coupling. Assume that the real parts of the
resonance frequencies can be tuned to ω1 ¼ ω2 ¼ ω, and
the perturbation to be sensed uniformly shifts the frequen-
cies of both modes by ϵ. The resulting equation of motion in
the classical limit is

d
dt

�
a1
a2

�
¼−i

0
@ðωþϵÞ− iγ1

2
g

g ðωþϵÞþ iγ2
2

1
A�a1

a2

�
: ð2Þ

The above equation is characterized by the 2 × 2 matrix
derived from the non-Hermitian Hamiltonian. It has an EP
[6] when the condition ðγ2 þ γ1Þ2=16 ¼ jgj2 is satisfied,
where the originally orthogonal eigenmodes of this equa-
tion of motion coalesce to a single mode with resonant
frequency Ω ¼ ½ωþ ϵþ iðγ2 − γ1Þ�=4. Note that if γ2 ¼ γ1
is also satisfied, Ω is real and hence called the lasing
frequency. EP-enhanced sensing will be achieved by
monitoring the quadrature amplitudes associated with a1,
a2 at fixed ω as the EP (and lasing frequency) is shifted by
the perturbation ϵ. Because of the EP, the resonance
amplitude falls off as ϵ−2, leading to higher sensitivity.
However Eq. (2) only describes the average behavior near
the EP and not the noise properties.

(a)

(b)

FIG. 1. (a) Schematic of two-bosonic-mode system with loss
and gain modeled classically. (b) Schematic of two-bosonic-
mode system with a full quantum description. The circles labeled
represent two bosonic modes a1 and a2, coupled to probing
channels A1 and A2. In addition to the probing channels, a1 is
intrinsically dissipated by scattering channel B1 and a2 is
intrinsically amplified by scattering channel B2, with different
coupling interactions. The arrows in the channels which point
toward the system modes represent the input modes, while those
with opposite direction represent the output modes.
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The imaginary parts of the coupling rates γ1, γ2 arise
from a combination of outcoupling to the probe channels
A1, A2 with rates κ1, κ2, and loss and gain processes in the
cavities with rates η1, η2 [36]. For simplicity we assume
κ1 ¼ κ2 ¼ κ. Hence, the total loss and gain rates are γ1 ¼
η1 þ κ and γ2 ¼ η2 − κ for the two modes, respectively. We
denote A1;inðoutÞ and A2;inðoutÞ for the complex amplitudes of
the two input (output) probe channels, satisfying the input-
output relation ðA1;out; A2;outÞ ¼ ðA1;in; A2;inÞ þ

ffiffiffi
κ

p ða1; a2Þ.
To fully characterize the noise properties, we also need to
model the fluctuations associated with the intrinsic loss η1
and gain η2. As shown in Fig. 1(b), this can be done by
introducing two auxiliary scattering channels B1 and B2 to
simulate the intrinsic dissipation and amplification proc-
esses in a1 and a2. According to quantum noise theory [23],
B1 is coupled to a1 via a beam-splitter-type interaction
B̂†
1â1 þ H:c: with coupling strength

ffiffiffiffiffi
η1

p
, while B2 is

coupled to a2 via a squeezer-type interaction B̂†
2â

†
2 þ

H:c: with coupling strength
ffiffiffiffiffi
η2

p
. The quantum Langevin

equations for both modes are

d
dt

�
â1
â2

�

¼ −i

 
ðωþ ϵÞ − i γ1ðκ;η1Þ

2
g

g ðωþ ϵÞ þ i γ2ðκ;η2Þ
2

!�
â1
â2

�

þ
 ffiffiffi

κ
p

Â1;inffiffiffi
κ

p
Â2;in

!
þ
 ffiffiffiffiffi

η1
p

B̂1;in

− ffiffiffiffiffi
η2

p
B̂†
2;in

!
; ð3Þ

which now has additional noise B̂1;in, B̂
†
2;in compared with

Eq. (2), inducing dependence of γ1, γ2 on κ, η1, and η2.
Amplitude vector and covariance matrix.—To model the

dissipation and amplification, we can simply set the chan-
nelsB1 andB2 to zero average amplitudes, i.e., vacuum. For
any pair of bosonic annihilation and creation operators â and
â†, we define a pair of “position” and “momentum”
quadrature operators q̂ ¼ âþ â† and p̂ ¼ −iðâ − â†Þ
[27]. Given any state of N modes, the amplitude vector μ
and covariance matrix V can be defined in the quadrature
basis μj ¼ hx̂ji and Vj;k ¼ 1

2
hx̂jx̂k þ x̂kx̂ji − hx̂jihx̂ki, for

1≤ j, k ≤ N, with vector x̂¼ðq̂1;q̂2;…;q̂N;p̂1;p̂2;…;p̂NÞT,
and h·i the expectation value [27].
To compute them, we perform the Fourier transform of

Eq. (3) to obtain the relation between the Fourier trans-
formed operators Â½ω�≡ R ÂðtÞe−iωtdt of the input and
output ports. The amplitude vector and covariance matrix
of the probe output channels are [37]

μout ¼ ðI −GθÞμin; ð4Þ
Vout ¼ ðI −GθÞVinðI −GθÞT þGθRV0

inR
TGT

θ ; ð5Þ
where

θ ¼ ϵ=κ ð6Þ

is the dimensionless perturbation strength, μin and Vin are
the amplitude vector and covariance matrix of the probe
input channels (A1;in½ω�, A2;in½ω�), and V0

in is the covariance
matrix of the auxiliary input channels (B1½ω�, B2½−ω�),
R ¼ diagf ffiffiffiffiffi

η1
p

;− ffiffiffiffiffi
η2

p
;
ffiffiffiffiffi
η1

p
;
ffiffiffiffiffi
η2

p g. The dimensionless lin-
ear response matrix Gθ [37] is

Gθ ¼ −ΩðθI −MÞ−1; ð7Þ

where the symplectic form Ω ¼ ð0; I;−I; 0Þ, and the 4 × 4
matrix M¼ð0;G;Γ1;0;G;0;0−Γ2;G;0;0;−Γ2;−Γ1;0;0;G;
0;Γ2;G;0Þ is the dimensionless effective Hamiltonian in
quadrature basis [39] with dimensionless parameters
Γ1 ¼ γ1=ð2κÞ, Γ2 ¼ γ2=ð2κÞ, and G ¼ g=κ.
For most applications, it is sufficient to consider

Gaussian states for the probe and auxiliary input channels.
Since Ĥ involves only linear interactions between modes,
the output states are also Gaussian, and are completely
characterized by the μout and Vout [27]. Hence, the above
calculations are sufficient to characterize the performance
of sensing.
EP sensing.—By choosing Γ1 ¼ Γ2 ¼ G the system

will be at the lasing threshold and will remain at
an EP as the perturbation shifts the lasing frequency
shifted by θ (the situation where the system is not
exactly at the lasing threshold will be discussed later).
We then have a nontrivial Jordan decomposition of the
matrix M ¼ PΛP with an invertible matrix P [40],
and Λ ¼ ð0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0Þ.
For small perturbation θ ≪ 1, the response matrix grows

as a polynomial of θ−1

Gθ ¼ −ΩðθI −MÞ−1 ¼ −θ−1
X∞
n¼0

θ−nΩMn

¼ −θ−1Ω − θ−2ΩM; ð8Þ

where the second equality uses the Taylor expansion and
the third equality uses Mn ¼ 0 for n ≥ 2. The first and
second terms of Gθ are due to lasing threshold and EP,
respectively. The second term implies an enhanced output
signal [the amplitude vector Eq. (4)] at ω as θ → 0.
However, the noise [the covariance matrix Eq. (4)] contains
a θ−4 term because of its dependence onGθ [37], and hence
diverges as θ → 0. Therefore, one might expect that there is
no hope of enhancing the sensitivity of the signal with
respect to the noise. However, systematic calculation of the
uncertainty of the measured parameter θ in the presence of
noise shows this is not necessarily true. In the following, we
first provide a lower bound to sensitivity using the quantum
Cramér-Rao bound and then provide an EP sensing pro-
tocol which achieves the same θ scaling as that bound.

PHYSICAL REVIEW LETTERS 123, 180501 (2019)

180501-3



Sensitivity lower bound.—In the presence of noise, the
standard deviation of the estimates of the parameter θ,
calculated from data obtained from some measurement,
is bounded by the inverse of the quantum Fisher informa-
tion IðθÞ of the state through the quantum Cramér-Rao
inequality [41]

δθ ≥ IðθÞ−1=2: ð9Þ
For Gaussian processes (e.g., our scheme), the quantum
Fisher information [42,43] takes the form IðθÞ¼IVðθÞ þ
IμðθÞ, where IVðθÞ is always positive and only depends on
Vout, and

IμðθÞ ¼
�
dμout
dθ

�
T
V−1

out
dμout
dθ

: ð10Þ

Since IVðθÞ is only determined by fluctuations in the
absence of the probe, the quantum Fisher information is
dominated by IμðθÞ for sufficiently strong input probes.
Equation (10) is the SNR generalized to be compatible with
vector-form inputs, as alluded to in the Introduction.
We plug Eqs. (4), (5), and (8) into Eq. (10) and

obtain [37]

IμðθÞ ¼ θ−4ðc0 þO½θ�Þ; ð11Þ

implying the leading contribution to the quantum Fisher
information scales at least as θ−4 (orange curve in Fig. 2)
and the sensitivity, δθ ≥ c0 × θ2, with constant c0 > 0
determined by the choice of input probe signals in generic
situations [37]. This EP-enhanced behavior is compared

with a non-EP scheme (with g ¼ η1 ¼ 0) which shows no
enhancement as θ → 0 (the solid green curve in Fig. 2).
Hence, EP sensing has a more favorable lower bound than
the conventional protocols.
One can intuitively understand the improvement by EP

as a result of correlations between different eigenmodes of
the output state. Because of the EP structure of the matrix
Gθ, different linear combinations of the quadratures will
accumulate noise with different θ dependence. For our
system, only two orthogonal directions in the four-dimen-
sional input space lead to noise amplified by θ−4 [37]; thus
there is a large remaining subspace of inputs for which the
SNR is enhanced by operating at or near an EP.
Heterodyne detection to achieve optimized EP sensing

scaling.—The Cramér-Rao bound applies to all possible
sensing schemes; now we provide a specific EP sensing
scheme that achieves the same scaling predicted by the
Cramér-Rao bound. The idea is to use heterodyne meas-
urement to extract the output amplitude vector μout. The
covariance matrix associated with the heterodyne detection
is Vout þ I [37,44], which includes the additional quantum
noise inherent in the simultaneous measurement of both
position and momentum quadratures. Fortunately, this
additional noise has no θ dependence, and becomes
negligibly small compared to Vout for θ → 0. Hence, we
have ðVout þ IÞ−1 ¼ V−1

outðIþO½θ�Þ ≈ V−1
out.

For example, by injecting a coherent state with μin ¼
Pð0; 1; 0; 0ÞT , the heterodyne detection can measure the
output amplitude vector μout ¼ ðI −GθÞμin ¼ μin−
ΩPðθ−2; θ−1; 0; 0ÞT . We can obtain uncertainty δθ ≈
IμðθÞ−1=2 ∼ θ2, which has the same scaling as the lower
bound obtained from Eqs. (9), (10), (11).
General approach and higher-order EP sensing.—We

summarize our general approach to achieve EP sensing
with the same scaling as the Cramér-Rao bound. For an EP
sensing scheme based on a Gaussian process, we calculate
the corresponding matrices to track the change of amplitude
and covariance matrix. Then we can calculate the quantum
Fisher information and obtain the precision bound.
Generally, Gθ ¼ −ΩðθΠ −MÞ−1 (in our previous discus-
sion, Π ¼ I, but it is invertible in general), and
MΠ−1 ¼ PΛP−1, with P invertible, and Λ known as the
Jordan normal form ofMΠ−1 consisting of diagonal blocks
of size Ni (for the ith block), each with eigenvalue zero.
When Ni ¼ 1, the corresponding block is just a scalar,
which is not an EP. To have EP enhanced sensing, we need
at least one nontrivial Jordan block (Ni ≥ 2) with eigen-
value zero.
Let N ¼ maxi Ni be the size of the largest zero-

eigenvalue Jordan block, corresponding to the (N − 1)th
order EP. Then it is easy to show that Gθ ¼
θ−N ½−ΩC0 þOðθÞ� þ � � � with θ → 0 with C0 a constant
matrix. This divergence near θ ¼ 0 leads to θ−N amplifi-
cation of the amplitude and θ−2N amplification of the
covariance matrix. One might be tempted to argue that the

FIG. 2. Smallest achievable standard variations determined by
the Cramér-Rao bound). All solid curves: minimal standard
variation of parameter θ. Solid orange line: two-mode EP sensing
at the lasing threshold with all modes perturbed. Solid blue line:
two-mode EP sensing at lasing threshold with only one mode
perturbed. Solid green line: single-mode conventional sensing, no
additional loss or gain. Dashed orange, blue, and green lines:
reference lines for θ2, θ1, and θ0 scaling, respectively. Dot-dashed
purple line: two-mode EP sensing below lasing threshold, with
additional loss δ ¼ 0.05Γ added to each cavity.
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IμðθÞ is then proportional to θ−2 since the scaling of
amplification with N can be perfectly canceled by a
covariance matrix. However, a more rigorous calculation
shows this is overly pessimistic. As dGθ=dθ ¼ GθΠΩGθ,
only oneGθ cancels with the amplification in the covariance
matrix. We have IμðθÞ ¼ μTinG

T
θC1Gθμin, where C1 is a

positive-definite matrix [37]. So IμðθÞ ≈ θ−2N for (N − 1)th
order EP. SinceIVðθÞ is always positive,IμðθÞ gives a lower
bound on quantum Fisher information. We have then the
quantum Cramér-Rao bound δθ ≳ θN [45], the scaling of
which can be achieved by performing heterodyne measure-
ment on all of the outputs even in this general situation.
Robustness of enhanced sensing.—The key conditions

for enhanced sensing are precise tuning to an EP and
operating the sensor at the lasing threshold. As noted
above, when satisfied, there are a large family of input
states generating enhanced sensitivity for appropriately
chosen outputs; i.e., the sensor is robust to the choice of
input state. While operation at the lasing threshold con-
dition is assumed in order to derive the results above, we
can actually relax this condition, and still achieve sensi-
tivity enhancement over some parameter range. A small
perturbation δ from the lasing threshold will simply
suppress the enhanced sensing θ below some cutoff. As
shown by the purple curve in Fig. 2, when we introduce
additional loss δ to both cavities, the quantum Fisher
information is upper bounded by IUB ≈ kGθ¼0k2 ≈ δ−4,
where k · k represents the trace norm [37]. So long as the
system is sufficiently close to the lasing threshold (δ ≪ θ),
the quantum Fisher information does not exceed the upper
bound (I ≈ θ−4 ≪ IUB), and the EP supports enhanced
SNR. Generally, for higher order EPs, we will have EP-
enhanced sensing near the lasing threshold as long as the
additional loss δ is much smaller than the signal θ [37].
In conclusion, we have established a theoretical frame-

work using quantum noise theory to calculate systemati-
cally both the signal and noise of EP sensors operating near
the lasing threshold. Using the quantum Fisher information,
we have obtained the lower bound of ultimate sensitivity of
EP sensors. Moreover, we provide a heterodyne detection
scheme to achieve the optimal scaling of the sensitivity
predicted by this bound. Since these EP sensors are
described by Gaussian processes with linear interactions,
EP sensing near the laser threshold coupled with hetero-
dyne detection should be feasible with current experimental
techniques, such as the microresonators of [21,22].
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Note added.—During the completion of this work, we
became aware of several related but different studies
[46,47]. In the work of Lau and Clerk [46], the authors
are proposing another way of achieving an enhanced
precision limit, i.e., by constructing nonreciprocal coupling
with the reservoir, while the function of EPs and lasing
threshold are not discussed. In [47] by Chen et al., although
a two-mode EP sensor is studied, the authors did not
mention the function of lasing threshold.
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