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In contrast with classical physics, in quantum physics some sets of measurements are incompatible in the
sense that they cannot be performed simultaneously. Among other applications, incompatibility allows for
contextuality and Bell nonlocality. This makes it of crucial importance to develop tools for certifying
whether a set of measurements respects a certain structure of incompatibility. Here we show that, for
quantum or nonsignaling models, if the measurements employed in a Bell test satisfy a given type of
compatibility, then the amount of violation of some specific Bell inequalities becomes limited. Then, we
show that correlations arising from local measurements on two-qubit states violate these limits, which rules
out in a device-independent way such structures of incompatibility. In particular, we prove that quantum
correlations allow for a device-independent demonstration of genuine triplewise incompatibility. Finally,
we translate these results into a semidevice-independent Einstein-Podolsky-Rosen-steering scenario.

DOI: 10.1103/PhysRevLett.123.180401

The fact that some pairs of quantum observables do not
commute implies that they cannot be measured simulta-
neously as the corresponding operators do not share a
common set of eigenvectors [1]. This incompatibility prop-
erty of quantum measurements is used in several quantum
information protocols such as quantum cryptography [2] and
quantum state discrimination [3–5], and is also required
in proofs of contextuality [6,7], Einstein-Podolsky-Rosen
steering (EPR steering) [8,9], and Bell nonlocality [10].
It is thus of fundamental and practical importance to

develop tools to experimentally certify that a set of
measurements respects a given type of incompatibility,
required for producing a specific type of quantum corre-
lation. Moreover, it would be very useful to be able to
achieve such a certification without needing to model the
experimental procedures that generate the experimental
statistics. This is precisely the aim of the paradigm of
device-independent certification used, for instance, for
certifying secure communication [11] and randomness
[12]. This paradigm assumes that quantum theory (QT)
is correct and that signaling between spacelike separated
events is impossible. Then, it uses the violation of specifi-
cally tailored Bell inequalities [13] to certify a targeted
property using only the experimental statistics.
The relation between Bell inequality violation and

measurement incompatibility was first studied by Fine,

who showed that, in the scenario where two parties are
restricted to two dichotomic measurements, a Bell inequal-
ity can only be violated if the observers use incompatible
measurements [14]. Later, Wolf et al. [15] showed that
every pair of incompatible measurements can be used to
violate the simplest Bell inequality, namely, the Clauser-
Horne-Shimony-Holt (CHSH) inequality [16]. Moreover,
methods for device-independent quantification of incom-
patibility have been proposed [17–19] and it is known that
some sets of incompatible measurements cannot be used to
violate Bell inequalities [20–22]. Finally, it is known that
when more than two measurements are considered, differ-
ent compatibility structures may appear [23,24].
In this Letter, we show how to test if a specific structure of

incompatibility is required to generate the statistics observed
in a Bell test. Our approach is based on the intuition that, if
the measurements used in the Bell test satisfy a targeted
structure of compatibility, then the amount of Bell violation
becomes limited and, therefore, any violation beyond this
limit rules out the presence of the targeted compatibility
structure. We also show examples of such violations in the
simplest scenario of local measurements applied to two-
qubit systems. Thus, at least the simplest structures of
incompatibility can be certified in a device-independent way.
Pairwise and n-wise incompatibility.—In quantum

mechanics, a measurementM on a d-dimensional quantum

PHYSICAL REVIEW LETTERS 123, 180401 (2019)

0031-9007=19=123(18)=180401(7) 180401-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.180401&domain=pdf&date_stamp=2019-10-31
https://doi.org/10.1103/PhysRevLett.123.180401
https://doi.org/10.1103/PhysRevLett.123.180401
https://doi.org/10.1103/PhysRevLett.123.180401
https://doi.org/10.1103/PhysRevLett.123.180401


system is described by a set of positive operators Ma ≥ 0,
where a labels the outcome of the measurement, acting on a
d-dimensional complex Hilbert space Cd and satisfying the
normalization condition

P
a Ma ¼ 1 (1 is the identity

operator). A set of n quantum measurements fMxgnx¼1 is
said to be fully compatible if and only if there exists a set
of measurement operators fEλg (Eλ ≥ 0 and

P
λ Eλ ¼ 1)

such that

Majx ¼
X

λ

pðajx; λÞEλ; ∀ a; x; ð1Þ

where pðajx; λÞ ≥ 0 and
P

a pðajx; λÞ ¼ 1 ∀ x; λ [25].
Otherwise, they are incompatible. Notice that a set
of compatible measurements can be implemented simulta-
neously by employing the measurement fEλg and post-
processing the results according to the probability
distribution fpðajx; λÞg.
Given the previous definition, a set of measurements can

present different structures of compatibility. For instance, a
set of three measurements can be pairwise compatible but
incompatible when all three measurements are considered
[23]. In general the compatibility structure of a set of
measurements can be represented by a hypergraph
C ¼ ½C1; C2;…; Ck�, where each hyperedge Ci indicates
a subset of measurements that are compatible. For instance,
the structure Cpair ¼ ½f1; 2g; f1; 3g; f2; 3g� indicates that
the measurements 1,2, and 3 are pairwise compatible, but
not triplewise compatible, while the structure C3full ¼
½f1; 2; 3g� indicates full triplewise compatibility (see
Fig. 1 for more examples). In Supplemental Material
[26], we show how the different kinds of measurement
incompatibility can be tested by semidefinite programming.
Within this framework, we can also define genuine

triplewise (or in general n-wise) incompatibility: A set
of three measurements is genuinely triplewise incompatible
when it cannot be written as a convex combination of
measurements that are pairwise compatible on different
partitions. Let us illustrate this concept with an example.

Consider a set of three noisy qubit Pauli measurements
given by measurement operators

Mη
ajx ≔ ηΠajx þ ð1 − ηÞ 1

2
; ð2Þ

where x ¼ 1, 2, 3 refers to each Pauli measurement (X, Y,
Z), respectively, and Πajx are their eigenprojectors. These

measurements are fully compatible for η ≤ 1=
ffiffiffi
3

p
≈ 0.58

and pairwise compatible for η ≤ 1=
ffiffiffi
2

p
≈ 0.71 [23]. It

turns out that, for η ≤ ½ð ffiffiffi
2

p þ 1Þ=3� ≈ 0.80, the set can
be written as a convex combination of other sets in which
two measurements are compatible (see Fig. 2). Thus,
although for η > 1=

ffiffiffi
2

p
the measurements are incompatible

[i.e., they do not admit a decomposition like (1)], it is only
for η > ½ð ffiffiffi

2
p þ 1Þ=3� that they are genuinely triplewise

incompatible.
Device-independent test of structures of incompatibil-

ity.—We now turn to the question of certifying the
different types of measurement incompatibility in a
device-independent way, i.e., by analyzing the statistics
of input and output relations of measurements. We consider
a bipartite Bell scenario where two parties, Alice and
Bob, share a bipartite state ρ onto which they perform
measurements labeled by x and y with outcomes a and b,
respectively. After many rounds of the experiment, Alice
and Bob can determine the set of conditional probability
distributions fpðabjxyÞg, which we call the observed
behavior [46]. A behavior is local when it can be written
as [10]

pðabjxyÞ ¼
X

λ

pðλÞpAðajx; λÞpBðbjy; λÞ; ∀ a; b; x; y;

ð3Þ

where pðλÞ, pAðajx; λÞ, and pðbjy; λÞ are probability
distributions. We denote the set of local behaviors by L.
If one of the parties, say Alice, performs a set of

measurements that are fully compatible, the observed
behavior is local regardless of the shared state and the
measurements of Bob [14]. This can be explicitly seen by
using the definition (1) as follows:

(a) (b) (c) (d)

FIG. 1. Examples of incompatibility structures for four mea-
surements. Each node represents a complete measurement (i.e., a
complete set of positive-value-operator measure elements), and
each hyperedge (represented by a region colored with the same
color) contains measurements that are compatible. If a set of
measurements are not contained in a hyperedge they are incom-
patible. The respective incompatibility structures are represented
by the following hypergraphs: (a) CA¼½ð1;2Þ�; (b) CB ¼
½ð1; 2Þ; ð3; 4Þ�; (c) CC¼½ð1;2Þ;ð1;3Þ;ð2;4Þ;ð3;4Þ�; (d) CD ¼
½ð1; 2; 3Þ; ð2; 4Þ�.

FIG. 2. The set of noisy Pauli measurements Xη, Yη, Zη defined
by (2) for η ¼ ½ð ffiffiffi

2
p þ 1Þ=3� can be written as a uniform convex

combination of Pauli measurements that have a compatible pair
(represented in a shaded area). Thus, one can implement these
measurements by randomly implementing sets of measurements
that are not triplewise incompatible.

PHYSICAL REVIEW LETTERS 123, 180401 (2019)

180401-2



pðabjxyÞ ¼ trðMajx ⊗ MbjyρÞ
¼

X

λ

pAðajx; λÞtrðEλ ⊗ MbjyρÞ

¼
X

λ

pAðajx; λÞpBðb; λjyÞ

¼
X

λ

pðλÞpAðajx; λÞpBðbjy; λÞ: ð4Þ

It then follows that the observation of a nonlocal behavior
(or equivalently the violation of a Bell inequality) certifies
in a device-independent way that both parties used incom-
patible measurements.
Similarly, in the case that Alice performs a set of

measurements that satisfy a more general compatibility
structure C, the observed behavior is local when restricted
to the measurements in the hyperedges Ci of C. For
instance, let us consider the case of three measurements
on Alice’s side for the sake of simplicity. Let A represent a
condition that the collected total behavior is guaranteed to
satisfy; for instance, A can be the nonsignaling condition
(denoted it by pðabjxyÞ ∈ NS) or the requirement that
the behavior has a quantum realization in terms of local
measurements on a quantum state (denoted it by
pðabjxyÞ ∈ Q). For any behavior respecting the condition
A, if Alice’s measurements x ¼ 1 and x ¼ 2 are compat-
ible, the probabilities of this behavior respect pðabjxyÞ ¼P

λ pðλÞpAðajx; λÞpBðbjy; λÞ for x ¼ 1, 2 and any y. We
denote by LA

12 this set of behaviors that respects the
condition A and is Bell local for x ¼ 1 and x ¼ 2.
Notice that the observation that fpðabjxyÞg ∉ LA

12

allows us to conclude that the measurements 1 and 2 are
incompatible. Analogously, we can define the sets LA

23

and LA
13 that correspond to the case where the other pairs

of Alice’s measurements are compatible. With these three
sets representing pairwise compatibility, we can also define
their convex hull LA

2conv ≔ ConvðLA
12; L

A
23; L

A
13Þ and inter-

sectionLA
2∩ ≔ LA

12 ∩ LA
23 ∩ LA

13 (see Fig. 3). The observation

that a behavior does not belong to these sets allows us to
conclude the following: (i) If fpðabjxyÞg ∉ L, then Alice’s
measurements are incompatible. (ii) If fpðabjxyÞg ∉ LA

ij,
then the measurements x ¼ i and x ¼ j are incompatible.
(iii) If fpðabjxyÞg ∉ LA

2conv, then the measurements of
Alice are genuinely triplewise incompatible. (iv) If
fpðabjxyÞg ∉ LA

2∩, then there is some pairwise incompat-
ibility on Alice’s measurements. Notice that we can also
define similar sets with respect to Bob’s measurements and
consider sets generated by given compatibility structures in
Alice’s measurements and others in Bob’s.
In what follows, we show that using a set of measure-

ments that satisfy a compatibility structure bounds the
amount of violation of certain Bell inequalities. Thus, the
observation of a value higher than this bound serves as a
certificate that the measurements are incompatible with
respect to this structure. To find these bounds, we need to
solve the following optimization problem: given a Bell
expression S ¼ P

abxy cabxypðabjxyÞ and a compatibility
structure C,

maximize S

such that pðabjxyÞ ∈ LC

pðabjxyÞ ∈ Q; ð5Þ

where LC indicates the set of behaviors that are partially
local according to the compatibility structure C.
Geometrically, this problem can be seen as a maximization
of S with respect to a set of behaviors that are quantum
and satisfy some partial locality [such as the sets LQ

ij in
Fig. 3(A)]. The last constraint in (5) imposes that the
behavior is quantum (Q), i.e., that it has a quantum
realization in terms of local measurements on a quantum
state. In practice, since there is no tractable way of
imposing that, we consider sets Qn ⊇ Q that outer approxi-
mate Q, Qn being the n level of the Navascués-Pironio-
Acín (NPA) hierarchy [47]. At each level n, the problem is
a semidefinite program whose solution provides an upper
bound to the desired bound and, hence, is still a valid bound
for detecting incompatibility.
We emphasize that if Alice performs quantum measure-

ments that are not genuinely triplewise incompatible,
the resulting behavior is inside LQ

2conv; hence the set
LQ
2conv can be used for device-independent quantum genu-

ine triplewise incompatibility certification. But since Bell
locality does not necessarily imply measurement compat-
ibility in general, the set LQ

2conv may be larger than the set
of quantum behaviors generated by imposing that Alice’s
measurements are not genuinely triplewise incompatible.
We discuss this in Supplemental Material [26] where we
show that the set of measurements generated by non-
genuinely triplewise incompatible measurements is strictly
smaller than LQ

2conv.

FIG. 3. Geometrical interpretation of sets of three pairwise and
triplewise compatible measurements. Here L123 is the standard
local set, where all local measurements are compatible. The set
LNS
ij consists of probabilities that are nonsignaling and are

partially local with respect to i and j, i.e., are local when only
the measurements i and j are considered on Alice’s side.
Analogously, LQ

ij is a set of behaviors that are quantum and
partially local with respect to measurements i and j.
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Nonsignaling device-independent witnesses of incom-
patibility structures.—It is also possible to test structures of
measurement incompatibility not only in QT but in more
general nonsignaling theories. For that, we just need to do a
similar optimization, but now considering the set of non-
signaling behaviors rather than the set of quantum behav-
iors. This entails changing the last constraint in (5) to the set
of linear constraints that defines the general nonsignaling
set NS; i.e., the optimization problem is now

maximize S

such that pðabjxyÞ ∈ LC

pðabjxyÞ ∈ NS; ð6Þ

where the last constraint means that the behavior satisfies
the nonsignaling conditions

X

a

pðabjx0yÞ ¼
X

a

pðabjx00yÞ ∀ x0; x00; ð7aÞ

X

a

pðabjxy0Þ ¼
X

a

pðabjxy00Þ ∀ y0; y00: ð7bÞ

Geometrically, this means that the maximization is now
running over a bigger set, since NS ⊇ Q [see, e.g.,
Fig. 3(B)].
Notice that some of the sets in the problem (6), which we

denote LNS
C , are easily characterized. In fact, in the case

of dichotomic measurements, it can be straightforwardly
shown that the set LNS

ij is precisely characterized by the NS
constraints plus all the CHSH inequalities involving Ai, Aj

and any two measurements on Bob’s side, independently of
the number of observables Bob has. Similarly, the set LNS

2∩ ,
obtained as the intersection of the sets for all ij, i.e., the

union of the systems of inequalities, is described by the NS
constraints and all CHSH-type inequalities between Alice’s
and Bob’s observables.
Results.—We have run the above optimization problems

for a variety of known bipartite Bell expressions S in
scenarios where Alice has three choices of dichotomic
measurements and Bob has three, four, or five choices
of dichotomic measurements. After, we completely char-
acterize the polytope LNS

2conv by explicitly obtaining all the
inequalities representing its facets; with that one can easily
decide when device-independent certification of genuine
triplewise incompatibility is possible if both parties have
three dichotomic observables. In order to help compare the
values, we have set the local bounds of the Bell expressions
to 0 and renormalized them such that their maximal
nonsignaling bounds are 1. The results are given in Table I.
We first considered all tight Bell inequalities of these

scenarios [8,48]. Using these inequalities we can test all
possible incompatibility structures, including genuine tri-
plewise incompatibility. We then looked at the chained Bell
inequality with three inputs [49,50], which is not tight but
can be generalized to multiple inputs. We also analyzed the
elegant Bell inequality IE [51] and the chained version of
the CHSH inequality proposed in Ref. [52], which self-test
orthogonal Pauli measurements on Alice’s side. Although
we find quantum violations for every incompatibility
structure bound, we did not manage to find a quantum
violation of the genuine triplewise incompatibility bounds
for general nonsignaling theories.
In the case of three dichotomic measurements per

party we were able to characterize the polytope LNS
2conv

by explicitly obtaining all the inequalities representing its
facets (see Supplemental Material [26]). Among all the
inequalities found there is a single class of inequalities that
can be violated by quantum systems, and this inequality is

TABLE I. Maximal value of some Bell expressions with respect to several constraints. The L and NS columns show the local (set to 0)
and nonsignaling (set to 1) bounds, respectively. The column “Qubits,” with values in italic, reports a lower bound for the maximal
violation achieved with two-qubit states (see Supplemental Material for details [26]). The column Q3 gives the maximal value given by
the third level of the NPA hierarchy [47], and provides an upper bound on the maximal value that can be found within QT. From column
LQ3
∩ to column LNS

2conv, we give the bounds found by solving (5) for different types of compatibility structures on Alice’s side, where NS
orQ3 indicates whether the nonsignaling constraints or the third level of the NPA hierarchy was used, respectively. Aviolation of any of
these bounds rules out the corresponding compatibility structure. We have depicted in bold the bounds that are smaller than the qubit
bound, indicating that the compatibility structure can be ruled out in two-qubit experiments.

Ineq. L Qubits Q3 LQ3
∩ minLQ3

ij LQ3

2conv LNS
∩ minLNS

ij LNS
2conv NS

I3322 0 0.2500 0.2509 0.2224 0.2359 0.2487 0.3333 0.5000 0.6667 1
I13422 0 0.2761 0.2761 0.1998 0.1998 0.2761 0.3333 0.5000 0.6667 1
I23422 0 0.2990 0.2990 0.2538 0.2769 0.2769 0.3333 0.6667 0.6667 1
I33422 0 0.2910 0.2910 0.1893 0.2599 0.2616 0.2222 0.6667 0.6667 1
I3522 0 0.3229 0.3229 0.2145 0.2675 0.2675 0.2222 0.6667 0.6667 1
Ichain3 0 0.5981 0.5981 0.0000 0.4142 0.4142 0.0000 1 1 1
IE 0 0.1547 0.1547 0.0000 0.1381 0.1381 0.0000 0.0000 0.3333 1
IchainCHSH 0 0.4142 0.4142 0.0000 0.2761 0.2761 0.0000 0.6667 0.6667 1
M3322 0 0.0122 0.0647 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1
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equivalent to the inequality M3322 of Ref. [53]. The M3322

inequality can be violated by two-qubit systems and this
violation proves that there exist quantum correlations that
cannot be simulated by any nonsignaling model respecting
pairwise compatibility. Interestingly, an experimental vio-
lation of this inequality was reported in Ref. [54], but the
observation of apparent signaling may require a reanalysis
of its conclusions [55,56].
All Bell inequalities tested are explicitly written in

Supplemental Material [26] and the code we used is
available at [57].
Testing incompatibility structures in the EPR-steering

scenario.—We finally consider the EPR-steering scenario,
where no assumptions on Alice’s measurements or the
shared state are made but Bob can perform state tomography
on his part of the system [58]. The experiment can be
described by an assemblage σajx ≔ trAðMajx ⊗ 1ρÞ,
which represents the unnormalized states held by Bob
when Alice performs the measurements labeled by x and
obtains the outcome a. We show that for any structure
C ¼ ½C1; C2;…; Ck�, there exists a physical assemblage that
allows us to rule out C. This assemblage is given by local
measurements fMajxg applied on any pure entangled state
with full Schmidt rank (e.g., the maximally entangled state).
This extends the connection between measurement compat-
ibility and EPR-steering established in Refs. [8,9,59]. See
Supplemental Material for more details [26].
Conclusions and open questions.—In this Letter, we

have shown that different structures of measurement
compatibility give rise to constraints in the correlations
that can be observed in Bell tests. These constraints can be
interpreted as a partial locality, where the behaviors can be
nonlocal but are seen to be local when restricted to some
measurement choices. As a consequence, the violation
of Bell inequalities by models satisfying incompatibility
structures is reduced with respect to models in which
measurements can be arbitrarily incompatible. This fact
allows us to test different types of measurement incom-
patibility in a device-independent way.
Some open questions follow from our work. First, can any

structure of genuine measurement incompatibility (for any
number of measurements and outcomes) be realized by a
quantum system? That would generalize the results of
Ref. [60], where the authors have shown that any measure-
ment structure can be realized in quantum mechanics.
Also, can any structure of genuine measurement incompat-
ibility be device-independently ruled out in QT (i.e., using
quantum behaviors)? A second problem is that of mathemati-
cally characterizing the partially local sets for other scenarios
and, in particular, finding tight inequalities that limit them.
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