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We study (1þ 1)-dimensional SUðNÞ spin systems in the presence of global SUðNÞ rotation and lattice
translation symmetries. Knowing the mixed anomaly of the two symmetries at low energy, we identify,
by the anomaly matching argument, a topological index for the spin model—the total number of Young-
tableau boxes of spins per unit cell modulo N—characterizing the “ingappability” of the system. A
nontrivial index implies either a ground-state degeneracy in a gapped phase, which can be thought of as a
field-theory version of the Lieb-Schultz-Mattis theorem, or a restriction of the possible universality classes
in a critical phase, regarded as the symmetry-protected critical phases. As an example of the latter case, we
show that only a class of SUðNÞ Wess-Zumino-Witten theories can be realized in the low-energy limit of
the given lattice model in the presence of the symmetries. Similar constraints also apply when a higher
global symmetry emerges in the model with a lower symmetry. Our results agree with several examples
known in previous studies of SUðNÞ models, and predict a general constraint on the structure factor which
is measurable in experiments.
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Introduction.—Identification of the phase of a many-
body quantum system is an important but, in general, hard
problem in condensed matter physics. Quite often, sym-
metries play an essential role in determining the phase. As a
notable example, the Lieb-Schultz-Mattis (LSM) theorem
and its generalizations [1–5] state that a lattice model
cannot be a trivial symmetric insulator if the filling per unit
cell is fractional and if the translation symmetry and
particle number conservation are strictly imposed. This
gives a strong constraint on possible gapped phases realized
in a given microscopic model. On the other hand, classi-
fication of critical phases is also an important problem.
In addition to the quantum critical points between gapped
phases, many stable critical phases have been found
numerically and experimentally [6–8]. However, the reason
of such stability is not completely understood. Moreover,
much less is known about universal constraints on the
critical phases, while a related proposal has recently been
addressed in SUð2Þ spin chains [9].
Systems with global symmetries higher than the conven-

tional Uð1Þ or SUð2Þ, in particular the SUðNÞ symmetry,
are of intense interest. For a long time, SUðNÞ symmetric
systems have been studied as a theoretical toy model to
understand the “physical” SUð2Þ spin systems. Recently,
moreover, “spin” systems with an SUðNÞ symmetry with
N > 2 are realized in ultracold atoms on optical lattices
[10–17]. A realization in spin-orbital systems is also
suggested [18]. Thus, the study related to the phase
diagrams of SUðNÞ spin systems is of realistic interest

on its own. Furthermore, even when only the SUð2Þ spin-
rotation and translation symmetries are imposed, they can
be enhanced to higher symmetries. For example, the spin-1
bilinear-biquadratic chain has an explicit SUð3Þ symmetry
at a special point called as the Uimin-Lai-Sutherland model
[19–21]. Higher symmetries can also emerge in the
thermodynamic limit, even if the microscopic model does
not have such symmetries exactly. For example, an emer-
gent SUð3Þ symmetry is found in a critical spin-2 chain
[22]. It would be important to find universal constraints on
such symmetry enlargements.
In this Letter, we focus on fundamental constraints on the

phase diagrams of ð1þ 1Þd SUðNÞ spin systems with spin-
rotation symmetry and lattice translation symmetry. Our
approach is based on the idea of ’t Hooft anomaly matching
[23], which has been used to investigate infrared behaviors
of strongly coupled systems (for example, see recent works
[24–29]). Specifically, we identify a topological quantity
for a lattice spin model that matches the “anomaly” of the
relevant symmetries in the low-energy phases and is given
by the total number of Young-tableau (YT) boxes of spins
per unit cell modulo N. It predicts whether the system
admits a unique gapped ground state and further restricts
ground-state degeneracies (GSDs) in gapped phases. Our
result agrees with the SUðNÞ generalization of the LSM
theorem [2]. In addition, it imposes constraints on possible
critical phases, going beyond the scope of the LSM-
type theorems. That is, we postulate a classification of
symmetry-protected critical (SPC) phases regarding the
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Wess-Zumino-Witten (WZW) universality classes of the
SUðNÞ spin models based on the anomaly matching,
generalizing the proposal for the SUð2Þ case [9].
Moreover, we discuss the consequence of our result on
magnetic neutron scattering as an example.
Furthermore, we also obtain a constraint on a higher

SUðN0Þ symmetry with N0 > N in a model with the SUðNÞ
symmetry only by matching their symmetry anomaly. As a
special example, such restriction can explain that SUð3Þ
symmetry enlargement has not been (actually, cannot be)
found in SUð2Þ and translation-symmetric half-integer spin
chains. This demonstrates the power of our anomaly based
approach, and paves a new way to discuss symmetry
enlargements in general.
Translationally invariant SUðNÞ spin system in 1þ 1

dimensions and the LSM index.—We consider a generic
(1þ 1)d SUðNÞ spin system described by a Hamiltonian
HSUðNÞ with both SUðNÞ spin-rotation and translation
symmetries. Here, the system is subject to periodic boun-
dary conditions, and the translation defines a unit cell
consisting of, for generality, multiple spins, forming a
group Tlatt ¼ Z (infinite cyclic group) in the thermody-
namic limit. A typical example of such a system is the
SUðNÞ Heisenberg antiferromagnetic (HAF) model

HHAF ¼ J
X

hi;ji;α;β
Sαi;βS

β
j;α; J > 0: ð1Þ

where α and β are the spin indices that take values among 1
to N and the SUðNÞ generators satisfy the following suðNÞ
Lie algebra commutation relations:

½Sαi;β; Sγj;δ� ¼ δi;jðδαδSγi;β − δγβS
α
i;δÞ: ð2Þ

The first question to be asked is whether HSUðNÞ has a
trivial symmetric gapped ground state [a translationally
invariant SUðNÞ singlet]. Here, we give an approach to
answering this question, based on the idea of symmetry
anomalies.
Let us consider, at first, the simplest HAF model with

a single spin in the fundamental representation (rep.) per
unit cell. The low-energy effective field theory (EFT) has
been shown to lie in the level-1 SUðNÞ WZW universality
class [30]

IðgÞ ¼ 1

8π

Z
M2

dtdxTrð∂μg−1∂μgÞ þ ΓWZ;

ΓWZ ¼ 1

12π

Z
B∶∂B¼M2

dtdxdyTrðdgg−1Þ3; ð3Þ

where fgαβg is an SUðNÞ matrix-valued field, and “Tr” is
the conventional matrix trace. To obtain the symmetry
transformation behavior of gαβðxÞ field, we use the N-flavor
spinor representation of Sαj;β following [30]:

Sαj;β ≡Ψ†αΨβðx ¼ jaÞ − δαβ=N;
X
α

Ψ†αΨαðxÞ ¼ 1;

ð4Þ

where a is the lattice constant, and the canonical anti-
commutation of the Ψ field and particle number constraint,
indeed, makes Sαj;β, defined above, satisfy the suðNÞ Lie
algebra in Eq. (2). Such a filling constraint also gives the
low-energy mode expansion as

ΨαðxÞ ≈ expð−ikFxÞψLαðxÞ þ expðikFxÞψRαðxÞ; ð5Þ

with kF ¼ π=ðaNÞ due to Eq. (4), where the left-moving
(L) and right-moving (R) modes ψL;RαðxÞ are coarse
grained continuous function: ψL;Rαðxþ aÞ ≈ ψL;RαðxÞ
in the continuum limit a → 0. Together with the mode
expansion Eq. (5), the lattice translation symmetry:
ΨαðxÞ → Ψαðxþ aÞ, acts on the low-energy field operator
as, for all α’s,

ψαðxÞ → exp ðikFaσ3ÞψαðxÞ ¼ exp ðiπσ3=NÞψαðxÞ; ð6Þ

where we have packed the ψL;R into the two component
Dirac fermion operator ψα ≡ ½ψRα;ψLα� acted by the Pauli
matrix σ3. Following the non-Abelian bosonization tech-
nique [30], the bosonic matrix field is gαβðxÞ ∝ ψ†α

L ψRβ up
to a Uð1Þ phase. Then, by Eq. (6), the lattice translation
transformation is

g → e2πi=Ng: ð7Þ

Equation (6) or (7) represents a discrete axial symmetry,
implying that the non-on-site Tlatt appears as an internal
symmetry ZN in the low-energy effective field theory. For
SUðNÞ-rotation symmetry, it is exactly the flavor rotation
symmetry as ψ → uψ or u†gu with u ∈ UðNÞ. However,
the actual global symmetry of such a high-spin rotation
should be PSUðNÞ≡UðNÞ=Uð1Þ, as the charge Uð1ÞQ
transformation ψðxÞ → exp½iϕðxÞ�ψðxÞ leaves the physical
operator Sαj;β invariant; such aUð1ÞQ is a gauge redundancy
to be modded out from UðNÞ flavor transformation. Thus,
the full symmetry within our interest is PSUðNÞ × ZN in
the WZW theory.
However, there might be a mixed ’t Hooft anomaly

between the PSUðNÞ and the ZN symmetries of the
WZW theory. More specifically, when the WZW theory
is coupled to a nontrivial background gauge field APSUðNÞ
with a unit PSUðNÞ instanton, its partition function suffers
a potential phase ambiguity under the ZN transformation
(7): ZWZW1

ðAPSUðNÞÞ → expð2πi=NÞZWZW1
ðAPSUðNÞÞ, as

we will show later on a more general ground (12). The
manifestation of such an anomaly in the EFT can be traced
back to the non-on-site nature of the lattice translation
in the microscopic lattice model [31–36]. Based on the
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concept of ’t Hooft anomaly matching that an anomaly is
robust against local symmetry-preserving interactions, the
EFT of any (1þ 1)d SUðNÞ spin system with a funda-
mental spin per unit cell shares the same anomaly factor
expði2πIN;1=NÞ as that of HAF model, namely IN;1 ¼ 1

mod N. Because of such universality of IN;1, we can use it
to characterize the underlying lattice models as a lattice
quantity to be called the LSM index, namely,

LSM index IN ↔ mixedPSUðNÞ − TEFT anomaly; ð8Þ

where TEFT denotes a general EFT representation of lattice
translation Tlatt. TEFT equals ZN for the case above in
Eq. (7). Actually, the full ’t Hooft anomaly of EFT also
includes the one for TEFT alone [37], an “emergent”
anomaly which only characterizes ingappability against
infinitesimal perturbations around criticality [33,34] and is
irrelevant to the universality properties we consider here.
Then, let us proceed to a more general case that there are

b YT boxes in total per unit cell and start with b copies of
fundamental chains discussed above. An SUðNÞ spin in
fundamental rep. is elementary, that is, any SUðNÞ irre-
ducible rep. with b boxes is contained in the tensor product
of b fundamental rep.’s. Thus, we can introduce strong
PSUðNÞ × Tlatt-preserving local interactions (of strength
U) as a projection operator within each unit cell to
leave only the b-box rep. in consideration at the relevant
energy scale such as J in a HAF model (with J ≪ U)
[30,38,39]. Because of the robustness of the anomaly phase
ambiguity against any local interaction and its multiplicity
by anomaly matching, the EFT of this b-box case has the
same anomaly as the b copies of fundamental chains:
IN;b ¼ bIN;1 ¼ b mod N, independent of the detail of
the YT rep. per unit cell. As a result, the LSM index
associated with a generic SUðNÞ system is identified by the
number of YT boxes of spins per unit cell modulo N,
namely [40]

IN ¼ ðb ¼ #of YT boxes per unit cellÞ mod N: ð9Þ

In Table I, we list (in the third column) the LSM indices
for several SUðNÞmodels with given YT reps. per unit cell.
A system with a nonzero LSM index (IN ≠ 0 mod N)
must exhibit nontrivial low-energy behaviors in connection
with symmetry-respecting ingappability [41], that is, such a
system is “ingappable” as long as both PSUðNÞ and Tlatt
symmetries are respected: the system can be in either a
symmetric gapless phase or a phase with spontaneous
symmetry breaking, e.g., a Tlatt-broken gapped phase or
a PSUðNÞ-broken gapless phase (the ferromagnetic phase).
We will elaborate these scenarios in the following.
Ground-state degeneracy associated with a spontaneous

broken translation symmetry.—First, let us assume that the
system has a nonzero gap above the ground state(s). By
Eq. (8), a nonzero LSM index IN ≠ 0 mod N is related to
the symmetry anomaly which is an obstruction to gapping
the system to have a unique ground state, so it implies a
nontrivial GSD, as in the case of the existing LSM-type
theorems. Here, we derive the degeneracy based on the
mixed anomaly. By considering a family of the LSM
indices pIN associated with lower translation symmetries
pTlatt ⊆ Tlatt for p ∈ N (as Tlatt ¼ Z) of a SUðNÞ spin
model, we obtain a restriction on the GSD of any gapped
phase of this model as [39]

GSD ∈
N

gcdðIN; NÞN; ð10Þ

and the translation symmetry is spontaneously broken to
at least N= gcdðIN; NÞ of unit cells, realizable by exactly
solvable models [49], where “gcd” denotes “greatest
common divisor.” Indeed, this corresponds to the LSM
theorem for the SUðNÞ spin chain [2], with an explicit
statement on GSD. In the first two rows of Table I, we list

TABLE I. Examples of gapped and critical SUðNÞ spin systems. For the first two gapped exactly solvable models, the actual GSDs are
consistent with our constraint. For the following critical models, the numerically proposed infrared conformal field theories (IR CFTs) in
the fifth column obey SPC classification specified by Eq. (13). VBS: Valence-bond-solid; TB: Takhtajan-Babujian; AJ: Andrei-
Johannesson.

Model YT IN GSD IR CFT; m Mixed anomaly

SUð3Þ trimer model [48] □ 1 mod 3 3 ∈ 3N � � � � � �
SUð3Þ 10-VBS model [48] 0 mod 3 1 ∈ 1N � � � � � �
SUð6Þ 70-VBS model [49] 3 mod 6 2 ∈ 2N � � � � � �
S − 3=2 TB model [50,51] 1 mod 2 � � � SUð2Þ3 WZW; 1 1 mod 2

H½3;2� AJ model [52,53] 2 mod 3 � � � SUð3Þ2 WZW; 1 2 mod 3
SUð3Þ 1 × 2-YT HAF model [54,55] 2 mod 3 � � � SUð3Þ1 WZW; 2 2 mod 3

SUð9Þ 2 × 1-YT HAF model [56] 2 mod 9 � � � SUð9Þ1 WZW; 2 2 mod 9

SUð3Þ 2-leg ladder [57] 2 mod 3 � � � SUð3Þ1 WZW; 2 2 mod 3
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the exactly solvable SUð3Þ trimer and 10-VBS models,
analogs of SUð2Þ dimer and Affleck-Kennedy-Lieb-Tasaki
models, as well as the SUð6Þ 70-VBS models with a quite
nontrivial YT rep. with three boxes. Their GSDs (shown in
the fourth column) are consistent with the constraint (10).
Constraint on critical WZW SUðNÞk universality

classes.—Next, we consider the other possibility, namely
when the system is gapless. While the usual LSM-type
theorems do not give any further restriction, in this case,
the anomaly based approach leads to constraints on the
possible universality class of the gapless critical phase. The
most natural universality classes of a critical SUðNÞ spin
model is the level-k SUðNÞWZW theory [30]—as we have
already seen in the HAF model. The action is given by
SWZWk

ðgÞ ¼ kIðgÞ, where IðgÞ is defined in Eq. (3) and k is
an integer, and we denote it as “SUðNÞk WZW.” The
infrared translation transformation TEFT takes the following
general form [30]:

g → e2πim=Ng; ð11Þ

which forms a Zn group with n ¼ N= gcdðm;NÞ, and the
integer m is defined modulo N.
One way to calculate the mixed anomaly in the WZW

theory is to make use of the equivalence between SUðNÞk
WZW theory to UðkNÞ1=UðkÞ constrained Dirac fermion
(CDF) theory [58,59] and then compute the Zn axial
anomaly in the CDF theory coupled to a background
PSUðNÞ gauge field. More explicitly, we show that [39]
there is a phase ambiguity of the WZW or CDF partition
function under the Zn transformation (11), which takes
the form expð2πikmw=NÞ, where w is a mod-N integer
depending on the background PSUðNÞ gauge field. From
this fact, we deduce that the mixed PSUðNÞ-Zn anomaly
phase for any SUðNÞk WZW theory with m defined by
Eq. (11) is characterized by a mod-N integer

km mod N; ð12Þ

which, after taking k ¼ m ¼ 1 and w ¼ 1 (corresponding
to the unit instanton of the PSUðNÞ gauge field), reduces to
the anomaly factor for EFT of fundamental chains: I ¼ 1
mod N.
Then, by the definition of the LSM index (8) and, also,

the way we represent it, we conclude that an SUðNÞ model
with an index IN at the lattice scale, when flowing to some
SUðNÞk WZW CFT in the infrared, must obey

IN ¼ km mod N: ð13Þ

Constraints on the (1þ 1)-d SUðNÞ spin models and
symmetry-protected critical phases.—Summarizing the
above discussion, we obtain the following statement based

on the matching condition, which includes the SUðNÞ
version of the LSM theorem: If a spin model with an exact
SUðNÞ spin-rotation and lattice translation symmetries has
a nontrivial LSM index IN (9), that is, the total umber of
Young-tableau boxes per unit cell is not divisible by N, the
system must either (i) have degenerate ground states below
the gap, with the multiplicity (10), or (ii) have gapless
excitations. If the low-energy EFT is given by an SUðNÞ
WZW theory, its level is constrained by the matching
condition (13).
The latter half of the statement implies an SPC classi-

fication of the gapless critical systems with the global
SUðNÞ rotation and the lattice translation symmetries.
That is, between the two fixed points corresponding to
SUðNÞk and SUðNÞk0 WZW theories with the representa-
tion of the translation symmetry (11) with the factors m
andm0, a renormalization-group (RG) flow is only possible
if km ¼ k0m0 mod N.
Our constraints are consistent with massless RG flows

proposed in the literature [55,57,60,61]. In Table I, we list
several critical phases of SUðNÞ spin systems with their
numerically proposed IR CFTs in the fifth column. The
mixed anomalies of these CFTs in the sixth column
calculated by Eq. (12) exactly match their LSM indices
in the third column, consistent with our “anomaly match-
ing” in Eq. (13) and each CFT belongs to a certain SPC
class of the underlying spin system. More specifically,
the quantity m of each IR CFT is calculated by the peak
κ ¼ 2πm=N of the structure factor defined as the Fourier
transform of spin-spin correlations or structure factors
CðrÞ≡P

α;βhSαr;βSβ0;αi [56]. In addition, perturbative
half-integer-spin TB models are permitted to flow to
SUð2Þ1 WZW theory with m ¼ 1 since the CFT mixed
anomaly matches their LSM indices, reproducing the
SUð2Þ SPC classification [9].
Experimental consequences.—Structure factors are

among fundamental quantities of interest in spin systems,
and are measured for example by neutron scattering at
non-zero scattering momenta [62–65]. The static structure
factor, which is the total magnetic scattering differential
cross section, corresponds to the Fourier transform of the
spin-spin correlation function CðrÞ. At an RG fixed point,
the correlation function CðrÞ is expected to behave as

CðrÞ ∼ const
r2

þ cos kor
rη

: ð14Þ

Thus, both ko and η can be extracted from the static
structure factor. On the other hand, Eq. (11) implies
ko ¼ 2πm=N, and for the SUðNÞk universality class, η≡
2ðN2 − 1Þ=½NðN þ kÞ� is known [66]. Combining Eqs. (9),
(13), (14), we arrive at a universal constraint between the
behavior of CðrÞ (infrared property) and the number of YT
boxes (ultraviolet property determined by the microscopic
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model). That is, for an SUðNÞ spin chain with b boxes per
unit cell, the asymptotic behavior of Eq. (14) must obey

�
2ðN2 − 1Þ

Nη
− N

�
Nko
2π

¼ b mod N: ð15Þ

Critical phases with higher symmetries.—It is possible
that an SUðNÞ model can have a critical phase described
by an SUðN0Þk0 WZW CFT with N0 > N. In this case, the
critical theory is constrained, regarding the level k0 and the
Z symmetry represented by g → e2πim

0=N0
g, by the SUðNÞ

LSM index IN of the spin model through the following
condition [39]

IN
N0

gcdðN0; k0m0Þ ¼ 0 mod N: ð16Þ

As a special example, an SUð2Þ spin chain with a half-
integer spin per unit cell does not admit any critical phase
described by the SUðN0Þ WZW CFT for any odd integer
N0, which explains SUð3Þ symmetries are only found in
integer-spin models [19–22]. Furthermore, if the SUðNÞ
spin model has an explicit symmetry enhancement [from
SUðNÞ to SUðN0Þ] leading to the occurrence of a higher-
symmetry critical phase, one can use a finer LSM index IN0

associated to the enlarged SUðN0Þ symmetry than the
original index IN to make further constraints on the
possible critical theories. For example, the SUð2Þ spin-1
Uimin-Lai-Sutherland model [19–21], which exhibits an
explicit SUð3Þ symmetry and can be expressed as an SUð3Þ
HAF model with fundamental rep. per site (unit cell), has
a nontrivial SUð3Þ LSM index I3 ¼ 1 mod 3 [while its
SUð2Þ LSM index I2 is trivial], consistent with the
existence of the SUð3Þ1 WZW critical theory (with
m0 ¼ 1) of this model.
Conclusions.—We proposed a topological “LSM index”

to diagnose the ingappability of a generic SUðNÞ spin
system in 1þ 1d with the spin-rotation and translation
symmetries, based on the mixed ’t Hooft anomaly. It leads
to a constraint on the GSD if the system is gapped (LSM
theorem), or on the possible critical theory if the system is
gapless. Another implication is that SUðNÞ WZW univer-
sality classes, which are SPC phases of the spin systems,
fall into a ZN classification. Furthermore, the formalism
can be applied to cases where a higher SUðN0Þ symmetry
emerges in SUðNÞ-symmetric systems, to derive con-
straints on the possible phases with the emergent symmetry.
We have verified that our results are consistent with several
previous results listed in Table I. Our approach is system-
atic and is not restricted to SUðNÞ. We believe that it will be
useful to further explore SPC phases, in particular, those
with emergent symmetries.
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