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Coarse Graining, Fixed Points, and Scaling in a Large Population of Neurons
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We develop a phenomenological coarse-graining procedure for activity in a large network of neurons,
and apply this to recordings from a population of 1000+ cells in the hippocampus. Distributions of coarse-
grained variables seem to approach a fixed non-Gaussian form, and we see evidence of scaling in both static
and dynamic quantities. These results suggest that the collective behavior of the network is described by a

nontrivial fixed point.
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In systems with many degrees of freedom, it is natural
to search for simplified, coarse-grained descriptions; our
modern understanding of this idea is based on the renorm-
alization group (RG). In its conventional formulation, we
start with the joint probability distribution for variables
defined at the microscopic scale, and then coarse grain by
local averaging over small neighborhoods in space. The
joint distribution of coarse-grained variables evolves as we
change the averaging scale, and in most cases the distri-
bution becomes simpler at larger scales: macroscopic
behaviors are simpler and more universal than their micro-
scopic mechanisms [1-4]. Is it possible that simplification
in the spirit of the RG will succeed in the more complex
context of biological systems?

The exploration of the brain has been revolutionized
over the past decade by methods to record, simultaneously,
the electrical activity of large numbers of neurons [5—15].
Here we analyze experiments on 1000+ neurons in the CA1
region of the mouse hippocampus. The mice are genetically
engineered to express a protein whose fluorescence
depends on the calcium concentration, which in turn
follows electrical activity; fluorescence is measured with
a scanning two-photon microscope as the mouse runs along
a virtual linear track. Figure 1(a) shows a schematic of the
experiment, described more fully in Ref. [15]. The field of
view is 0.5 x 0.5 mm? [Fig. 1(b)], and we identify 1485
cells that were monitored for 39 min, which included 112
runs along the virtual track. Images are sampled at 30 Hz,
segmented to assign signals to individual neurons, and
denoised to reveal transient activity above a background of
silence [Fig. 2(a)].

In familiar applications of the RG, microscopic variables
have defined locations in space, and interactions are local,
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so it makes sense to average over spatial neighborhoods.
Neurons are extended objects, and make synaptic con-
nections across distances comparable to our entire field of
view, so locality is not a useful guide. But in systems with
local interactions, microscopic variables are most strongly
correlated with the near spatial neighbors. We will thus
use correlation itself, rather than physical connectivity,
as a proxy for neighborhood. We compute the correlation
matrix of all the variables, search greedily for the most
correlated pairs, and define a coarse-grained variable by
the sum of the two microscopic variables in the pair [16],
as illustrated in Fig. 2. This can be iterated, placing the
variables onto a binary tree; alternatively, after k iterations,
we have grouped the neurons into clusters of size K = 2,
and each cluster is represented by a single coarse-grained
variable. We emphasize that this is only one of many
possible coarse-graining schemes [17].

FIG. 1. (a) Schematic of the experiment, imaging inside the
brain of a mouse running on a styrofoam ball. Motion of the ball
advances the position of a virtual world projected on a surround-
ing toroidal screen. (b) Fluorescence image of neurons in the
hippocampus expressing calcium sensitive fluorescent protein.
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FIG. 2. Fluorscence signals, denoising, and coarse graining.
(a) Continuous fluorescence signals, raw in grey and denoised in
black, for three neurons in our field of view. (b) Activity of eight
example neurons. Maximally correlated pairs are grouped to-
gether by summing their activity, normalizing so the mean of
nonzero values is one. Each cell can only participate in one pair,
and all cells are grouped by the end of each iteration. Darker
arrows correspond to stronger correlations in the pair.

A technical point concerns the normalization of coarse-
grained variables. We start with signals whose amplitude
has an element of arbitrariness, being dependent on the
relations between electrical activity and calcium concen-
tration, and between calcium concentration and protein
fluorescence. Nonetheless, there are many moments in time
when the signal is truly zero, representing the absence of
activity. We want to choose a normalization that removes
the arbitrariness but preserves the meaning of zero, so we
set the average amplitude of the nonzero signals in each cell
equal to one, and restore this normalization at each step of
coarse graining.

Formally, we start with variables {x;(f)} describing
activity in each neuron i = 1,2--- N at time t; since our
coarse graining does not mix different moments in time, we
drop this index for now. We compute the correlations

. (6x;0x;)
T (B (8x)))

(1)

where 6x; = x; — (x;). We then search for the largest
nondiagonal element of this matrix, identifying the max-
imally correlated pair i, j,(i), and construct the coarse-
grained variable

xz('Z) = Zl('2) (x;i +x;.0)) (2)

where Zl(-z) restores normalization as described above. We
remove the pair [7, j, (i)], search for the next most correlated
pair, and so on, greedily, until the original N variables have
become |N /2] pairs. We can iterate this process, generat-
ing Ny = |[N/K| clusters of size K = 2, represented by
coarse-grained variables {x,(»K)}.

We would like to follow the joint distribution of variables
at each step of coarse graining, but this is impossible using
only a finite set of samples [18]. Instead, as in the analysis
of Monte Carlo simulations [19], we follow the distribution
of individual coarse-grained variables. This distribution is a
mixture of a delta function exactly at zero and a continuous
density over positive values,

lN
9= 20
P

0(K)(x) +[1 = Po(K)]Qk (x).  (3)

where our choice of normalization requires that

/oo dxQr(x)x = 1. (4)
0

If the coarse-grained activity of a cluster is zero, all the
microscopic variables in that cluster must be zero, so that
Py(K) measures the probability of silence in clusters of
size K. This probability must decline with K, and in
systems with a finite range of correlations this decline is
exponential at large K, even if individual neurons differ in
their probability of silence.

Figure 3 shows the behavior of Py(K) and Qg(x) from
the microscopic scale K = 1 to K = 256, and we see that
the data are described, across the full range of K, by

Py(K) = exp(—aKk?), (5)
with = 0.87 +0.03 [20]. This scaling with g < 1 sug-
gests that correlations among neurons are self-similar
across ~2.5 decades in K [21].

Coarse graining replaces individual variables by aver-
ages over increasingly many microscopic variables. If
correlations among the microscopic variables are suffi-
ciently weak, the central limit theorem drives the distribu-
tion toward a Gaussian; a profound result of the RG is
the existence of non-Gaussian fixed points. While summa-
tion of correlated variables easily generates non-Gaussian
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FIG. 3. Scaling in the probabilities of silence and activity. (left)

Probability of silence as a function of cluster size. Dashed line is
an exponential decay = 1, and the solid line is Eq. (5). (right)
Distribution of activity at different levels of coarse graining,
from Eq. (3) with normalization from Eq. (4). Larger clusters
corresponds to lighter colors.

distributions at intermediate K, there is no reason to expect
the approach to a fixed non-Gaussian form, as we see with
Qk(x) on the right side in Fig. 3.

If correlations are self-similar, then we should see this in
more detail by looking inside the clusters of size K, which
are analogous to spatially contiguous regions in a system
with local interactions. We recall that, in systems with
translation invariance, the matrix of correlations among
microscopic variables is diagonalized by a Fourier trans-
form, and that the eigenvalues A of the covariance matrix
are the power spectrum or propagator G(k) [22]. At a fixed
point of the RG this propagator will be scale invariant,
2= G(k) = A/k*™, where the wave vector k indexes the
eigenvalues from largest (at small k) to smallest (at large k),
and in d dimensions the eigenvalue at k is of rank ~(Lk),
where L is the linear size of the system. The number of
variables in the system is K ~ (L/a)?, where a is the lattice
spacing and the largest k ~ 1/a. Putting these factors

together we have
K \*
A=B|l—|, 6
(rank) ©)

with 4 = (2 —n)/d. Thus scale invariance implies both a
power-law dependence of the eigenvalue on rank and a
dependence only on fractional rank (rank/K) when we
compare systems of different sizes.

Figure 4 shows the eigenvalues of the covariance matrix,
C;; = (6x;0x;), in clusters of size K = 16, 32, 64, 128; the
eigenvalue spectrum of a covariance matrix is distorted by
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FIG. 4. Scaling in eigenvalues of the covariance matrix spectra,
C;; = (6x;6x;), for clusters of different sizes. Larger cluster
corresponds to lighter color. Solid line is the fit to Eq. (6).

finite sample size, catastrophically so at large K, and we
stop at K = 128 to avoid these problems. A power-law
dependence on rank is visible (with gy =0.71 £ 0.15),
albeit at only over a little more than one decade; more
compelling is the dependence of the spectrum on relative
rank, accurate over much of the spectrum within the small
error bars of our measurements.

If we are near a fixed point of the RG, then in systems
with local interactions we will see dynamic scaling, with
fluctuations on length scale £ relaxing on timescale 7 o« £~.
Although interactions in the neural network are not local,
we have clustered neurons into blocks based on the strength
of their correlations, and we might expect that larger blocks
will relax more slowly. To test this, we compute the
temporal correlation functions

Nk

Cir) = NiKwa?”(ro)&xE%o ). ()
i=1

Qualitatively, the decay of Cg(t) is slower at larger K, but
we see in Fig. 5 that correlation functions at different K
have the same form within error bars if we scale the time
axis by a correlation time 7. (K ), which we can define as the
1/e point of the decay. Although the range of z,. is small (as
a result of the small value of Z), we see that

.(K) = 7, K7, (8)
except for the smallest K where the dynamics are limited by

the response time of the fluorescent indicator molecule
itself; quantitatively, Z = 0.11 = 0.01. Error bars on 7, at

178103-3



PHYSICAL REVIEW LETTERS 123, 178103 (2019)

1 cluster size —Z=0.11+0.01
—K=1 ]
0.9 ‘ o4 1.2

mK=16

_ 0.84 - K=64 1.1

e K=128

QX 0.7 14

= e°

~ 4 [0]

§ 054 5 :

El &

S 044 °

2 £ 0.8

c o

S 0.3 o

©

(9]

= 0.24

S 0.7

o

0.1
ol ¢
, ; , 0.6-4h . .
0 5 10 10° 10" 102
time t/t_ cluster size K
FIG.5. Dynamic scaling. (left) Correlation functions for differ-

ent cluster sizes [Eq. (7)]. We show K = 1, 4, 16, 64, 128 (last
one with error bars), where color lightens as K increases,
illustrating the scaling behavior when we measure time in units

of 7.(K). (right) Dependence of correlation time on cluster size,
with fit to Eq. (8).

K = 256 are large; hence we fit up to K = 128; errors at
different K are necessarily correlated, which results in
relatively small error bars for Z.

Before interpreting these results, we make several
observations, explored in detail elsewhere [23]. First,
and most importantly, we have done the same experiment
and analysis independently in three different mice; impor-
tantly there are no “identified neurons” in the mammalian
brain, so we can revisit the same region of the hippocampus
in another animal, but there is no sense in which we revisit
the same neurons. Nonetheless we see the same approach to
a fixed distribution and power-law scaling, with exponents
measured in different animals having the same values
within error bars; this is true even for /~3, which has error
bars in the second decimal place. These results suggest,
strongly, that behaviors we have identified are independent
of variations in microscopic detail, as we hope.

Second, all the steps of analysis that we have followed
here can be redone by discretizing the continuous fluores-
cence signals into binary on-off states for each neuron, as
in Ref. [24]. Again we see an approach to a fixed non-
Gaussian distribution, and power-law scaling; all exponents
agree within error bars.

Third, we consider the relation of our observations to the
salient qualitative fact about the rodent hippocampus,
namely that many of the neurons in this brain area are
“place cells.” These cells are active only when the animal
visits a small, compact region of space, and silent other-
wise; activity in the place cell population is thought to form
a cognitive map that guides navigation [25,26]. This spatial

localization of activity is preserved by our coarse-graining
procedure, although it was not designed specifically to do
this. In fact fewer than half of the cells in the population that
we study are place cells in this particular environment, but
after several steps of coarse-graining essentially all of the
coarse-grained variables have well developed place fields.
On the other hand, the scaling behavior that we see is not a
simple consequence of place field structure. To test this, we
estimate for each cell the probability of being active at each
position, and then simulate a population of cells that are
active with this probability but independently of one
another; activity is driven by the observed trajectory of
the mouse along the virtual track, and to compare with the
fluorescence data we smooth the activity with a kernel
matched to the known dynamics of the indicator molecule.
In smaller populations this independent place cell model
fails to capture important aspects of the correlation struc-
ture [24], and here we find that it does not exhibit the
scaling shown in Figs. 3-5. These behaviors also do not
arise in surrogate data sets that break the correlations
among neurons.

Finally, we consider more generic model networks. We
have simulated networks with continuous activity variables
(“rate networks”’) and random connections [27], as well as
networks of spiking neurons in the asynchronous-irregular
regime [28] that can generate some signatures of critical
behavior without fine tuning [29]. In none of these
simulations do we see scaling or the emergence of fixed
non-Gaussian distributions of the coarse-grained variables;
more details will be given elsewhere. The absence of
scaling in these simulated networks confirms the intuition
from statistical physics that arriving at a fixed point of the
RG, with associated scaling behaviors, is not an accident.
We conclude that our observations are not artifacts of
limited data, are not generic features of neural networks,
and are not simple consequences of known features of the
neural response in this particular network.

In equilibrium statistical mechanics problems with local
interactions, a fixed distribution and power-law scaling
behaviors are signatures of a system poised near a critical
point in its phase diagram. The idea that networks of
neurons might be near to criticality has been discussed for
more than a decade [30]. One version of this idea focuses
on “avalanches” of sequential activity in neurons [31,32],
by analogy to what happens in the early sandpile models for
self-organized criticality [33]. In the human brain, it has
been suggested that the large scale patterns of physical
connectivity may be scale free or self-similar, providing a
basis for self-similarity in neural activity [34,35]. A differ-
ent version of the idea focuses on the distribution over
microscopic states in the network at a single instant of time
[36,37], and is more closely connected to criticality in
equilibrium statistical mechanics. Related ideas have been
explored in other biological systems, from biochemical and
genetic networks [38—41] to flocks and swarms [42,43].
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In our modern view, invariance of probability distributions
under iterated coarse graining—a fixed point of the
renormalization group—may be the most fundamental test
for criticality, and has meaning independent of analogies to
thermodynamics.

A fundamental result of the RG is the existence of
irrelevant operators, which means that successive steps of
coarse graining lead to simpler and more universal models.
Although the RG transformation begins by reducing the
number of degrees of freedom in the system, simplification
does not result from this dimensionality reduction but
rather from the flow through the space of models. The
fact that our phenomenological approach to coarse-graining
gives results that are familiar from successful applications
of the RG in statistical physics encourages us to think that
simpler and more universal theories of neural network
dynamics are possible.
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