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Entropy and free-energy estimation are key in thermodynamic characterization of simulated systems
ranging from spin models through polymers, colloids, protein structure, and drug design. Current
techniques suffer from being model specific, requiring abundant computation resources and simulation at
conditions far from the studied realization. Here, we present a universal scheme to calculate entropy using
lossless-compression algorithms and validate it on simulated systems of increasing complexity. Our results
show accurate entropy values compared to benchmark calculations while being computationally effective.
In molecular-dynamics simulations of protein folding, we exhibit unmatched detection capability of the
folded states by measuring previously undetectable entropy fluctuations along the simulation timeline.
Such entropy evaluation opens a new window onto the dynamics of complex systems and allows efficient
free-energy calculations.
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Utilizing the exponentially growing power of computers
enables in silico experiments of complex and dynamic
systems [1]. In these systems, entropy (S) and enthalpy (H)
should be evaluated to appraise the system thermodynamic
properties. While enthalpy can be directly calculated from
the interaction strength between the system’s components,
computing the entropy of an equilibrated canonical system
essentially requires inferring the probabilities of all relevant
microstates (i.e., specific configurations). Consequently,
for large systems, contemporary computational capabilities
struggle to simulate sufficient microstates for adequate
mapping of the free-energy landscape. This fact limits the
current ability to estimate thermodynamic properties of
interesting systems and phenomena including, e.g., protein
folding [1–3].
Present strategies to estimate the entropy from simula-

tions include density- or work-based methods [4]. These
methods have been proven useful, though they rely on
plentiful computational power, for simulations away from
the designated realization [5–7]. Notably, no single method
for entropy and free-energy evaluation can be viewed as
superior to others, and in many cases, the choice is system
dependent [8]. As an alternative path, a reduced phase-
space assignment can be used, as previously demonstrated
in protein folding simulations [1,2,9]. There, using a priori
knowledge, such as the experimental native protein
structure, can be used to attribute each frame a specific
state (e.g., folded or unfolded protein states). Following, a
rough estimate of the system’s free-energy and thermody-
namic properties is then attained using the respective
state populations, although entropy values are not directly
assigned.
Seminal papers in information theory by Shannon [10]

and Kolmogorov [11] introduced measures of uncertainty

which are mathematically identical to the statistical-
mechanics definition of entropy at the large dataset limit.
Lossless compression algorithms are essentially practical
implementations attempting to realize Kolmogorov com-
plexity [12,13]. Recognizing these relations has produced
novel analytical methods for studying mutual informa-
tion in sequences of symbols, internet traffic analysis,
and redundancy anomaly detections for medicinal signal
analysis in electroencephalography, electrocardiography,
and more [14–17]. Despite these important links, studies
of physical systems using lossless compression are
rather sparse. Exceptions include recent studies on
thermodynamic phase transitions [18–21]. Additional
details on previous studies involving compression algo-
rithms for physical systems are given in the Supplemental
Material [22].
Here, we present a framework for accessible and

accurate asymptotic entropy (SA) calculation using a
lossless-compression algorithm. Conceptually, the redun-
dancy of information stored in a recorded simulation is
tightly related to the entropy of the physical system being
simulated. At the foundation of our method, we use a
lossless-compression algorithm which is optimized to
remove information redundancy by locating repeated pat-
terns within a stream of data. Thus, the ability to compress a
digital representation of a physical system is directly related
to the entropy of that system [22,27]. We note that other
methods exist for the estimation of information entropy in a
data stream [27]. Here, we chose to utilize lossless
compression, due to its availability and ease of use.
As a proof of concept, we verify our entropy estimation

on various model systems where the entropy is analyti-
cally calculated and compared. Later, the direct applica-
tion of asymptotic entropy calculation is demonstrated
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on protein folding simulations, where entropy estimation
is challenging.
Most adopted lossless-compression implementations

derive from schemes introduced by Lempel and Ziv
(LZ) [28–30]. LZ algorithms process an input sequence
of symbols in a finite alphabet and produce a compressed
output sequence by replacing short segments with a
reference to a previous instance of the same segment.
Fundamentally, the ratio of LZ compressed to input
sequence lengths has been proven to converge to
Shannon’s entropy definition [16,31]. This convergence
is guaranteed for an infinite sequence of symbols, produced
by an ergodic random source. A sequence of independent
microstates sampled from a physical system in equilibrium
is in accord with the required random source [22].
One expects LZ schemes to produce an upper bound on

physical entropy and approach it asymptotically for large
datasets [31]. In practice, our entropy estimation converges
to within a few percent from expected values, even for
relatively small datasets. This result, in combination with
readily available enthalpy values from the simulations,
allows us to construct enthalpy-entropy population dia-
grams for the complex and dynamic simulation of protein
folding.
To calculate entropy using a compression-based algo-

rithm, we must quantitatively map the information content
(compressed length) to entropy in the proper scale. However,
preliminary steps are required to eliminate spurious effects
that result from the combination of translating physical
systems into 1D datasets, the physical nature of the specific
problem, and the algorithm limitations.
Several physical systems are represented using continu-

ous variables. There, each variable requires an enormous
alphabet to represent each degree of freedom. This poses a
difficulty for compression since the least-significant digits
are noisy, and hence incompressible. Therefore, a prepro-
cess is required to reduce the alphabet variability to a
coarse-grained representation with ns values. For additional
preprocessing details, see [22].
In the following, we now take the discretized configu-

rations and store them contiguously in a 1D file [22]. We
define the original and compressed file sizes, measured in
bytes, by C̃d and Cd, respectively. To properly evaluate the
asymptotic entropy SA, we generate two additional datasets
having the original dataset length. In the first, data over the
entire phase space are replaced with a single repeating
symbol (e.g., zero). In the second, all the dataset is replaced
with random symbols from the alphabet. The resulting two
compressed dataset file sizes are denoted by C0 and C1,
respectively. The ratios C0=C̃0 and C1=C̃1 converge at the
large dataset limit to a value that depends on the size of the
alphabet [22].
Since the degenerate and random datasets represent the

extreme cases of minimal and maximal entropy, the com-
pressed file size for the simulated state (Cd) lays within

these two extremes. Therefore, we define the incompress-
ibility by η ¼ ðCd − C0Þ=ðC1 − C0Þ. For physical systems
0 ≤ η ≤ 1, and converges to a constant in equilibrium with
sufficient sampling.
Finally, mapping η to SA can be conducted in various

ways, for example from prerequisite knowledge on specific
entropy values. Alternatively, we recognize that for each of
theD degrees of freedom in the system, represented with ns
discrete values, the maximal entropy is given by kB log ns,
where kB is the Boltzmann constant. Therefore, as a first
order approximation, we linearly map η to entropy, up to an
additive constant, by taking SA=kB ¼ ηD log ns (Fig. 1)
[22]. Below, we demonstrate that this linear mapping
asymptotically quantifies the entropy even with finite
sampling and far from the large dataset limit (e.g., number
of microstates).
We are now ready to evaluate our scheme for several

benchmark systems. Herein, we use the Lempel-Ziv-
Markov chain-Algorithm compression algorithm, although
other algorithms produce qualitatively similar results [19].
We compare SA to analytical entropy calculation of five
different systems [Figs. 2(a)–2(f)]: finite energy levels (ϵ,
2ϵ, 70ϵ, 80ϵ) with an arbitrary energy scale (ϵ) simulated at
different temperatures (T), a 2D Ising model on a square
lattice, 2D ferromagnetic and antiferromagnetic (frustrated)
Ising models on triangular lattices, and an ideal chain
fluctuating in 2D with fixed end-to-end distance (R). The
Ising models have exchange energy J, the ideal chain is
simulated with monomer length b, and all systems are
simulated using Monte Carlo algorithms [22]. The results
agree well with the theoretical calculation [Figs. 2(a)–2(d)].
In fact, for the Ising model on a square lattice, maximal
residues from analytical values are smaller than 0.04kB
[Fig. 3(a)]. For the ideal chain simulation, our entropy
estimation matches the known entropy dependence of
SðRÞ − Sð0Þ ¼ −R2=b2ðN − 1Þ, where N is the number
of monomers, without any fitting parameters [Fig. 3(e)]
[22]. Also, our results present a smooth trend and enable us
to differentiate SA for specific heat and critical exponent
derivations [Figs. 2(e) and 2(f)].

FIG. 1. Schematic asymptotic entropy calculation. Simulations
of physical systems are preprocessed and encoded into data files
[22]. Entropy is directly calculated from the size of the com-
pressed (Cd) and calibration (C0, C1) data, as well as the entropy
range (Smin, Smax).
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Since compression algorithms result in an upper bound
for the entropy, we can evaluate and optimize different
preprocessing protocols [22]. For example, a comparison
between different 2D to 1D transformations for the Ising
model on a square lattice shows that the Hilbert scan [32] is
slightly better than other naive transformations [Fig. 3(a)].
Notably, we can use data compression to evaluate ergo-
dicity and proper sampling intervals [Fig. 3(b)] [22,31].
While the convergence of SA with an increasing sampling
interval is exponential, its convergence with additional
sampling is logarithmic [Fig. 3(c)], as expected [33], and
will level off as it approaches the actual value, similarly to
trends in random data Fig. S1 [22]. Moreover, for as low as
1000 frames SA estimate is a few percent off the analyti-
cally calculated values.
Next, we consider the case of continuous variables which

must be coarse grained for further processing and apply it
on simulated lattice-free ideal chains [22]. The optimal

discretization (ns) should depend on the correlations in the
system and the number of sampled configurations.
Furthermore, the choice of a coordinate system represent-
ing the degrees of freedom in the system can introduce or
eliminate correlations. In our case, the ideal chain simu-
lation is recorded with 64-bit floating numbers for each
Cartesian coordinate, but the analysis is applied to the 1D
bond-angle representation [22]. We note that standard
compression algorithms work best with short range corre-
lations. For physical systems exhibiting long-range
correlations, more attention will be required, possibly by
transformation to an alternative representation (e.g., Fourier
transform).
The ideal chain example validates that optimal coarse

graining can be identified using our procedure [Fig. 3(d)].
At the low ns limit significant information is lost, and the
entropy estimate cannot be resolved well. On the other
hand, pattern matching by the compression algorithm is
hindered by finite sampling and the estimate increases
towards the maximal entropy at the high ns limit. Indeed,
SA evaluation shows a shallow minimum that deepens as
the chain is stretched [22].
Encouraged by our results, we test our entropy estima-

tion scheme where free-energy evaluation is a serious
concern, namely in protein folding simulation. There,
entropy evaluation is currently limited when using the
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FIG. 2. Validation to asymptotic entropy calculation to
Monte Carlo simulation data on benchmark model systems, by
comparing analytical entropy calculation (lines) and compression
algorithm method (symbols). (a) Discrete energy levels; Ising
models on (b) square lattice, and (c) triangular lattice, either with
antiferromagnetic (J < 0, triangles) or ferromagnetic (J > 0,
circles); (d) Ideal chains held at varying end-to-end distance
(R). (e) and (f) Entropy derivatives of the Ising model simulations
[(b) and (c), respectively].
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FIG. 3. (a) Residuals from analytical entropy for various 1D
reductions of the Ising model on a square lattice: row by
row (squares), spiral (triangles), Hilbert (circles), Hilbert with
1 site/byte (pentagons), Hilbert with 3 sites/byte (diamonds).
(b) and (c) Asymptotic entropy convergence for the Ising model
on a square lattice. (b) Varying sample size (N) and fixed
sampling interval (140L2). (c) Varying sampling interval with
fixed sample size (104), exhibiting exponential convergence
(solid line). (d) Effect of coarse-graining level on SA for the
ideal chain. Lines are a guide for the eye.
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simulation data alone [34]. Specifically, we quantify
entropy for the reversible protein folding of a Villin
headpiece C-terminal fragment simulated by molecular
dynamics (MD) [2]. The system is sampled at equilibrium
and demonstrates short transition times between folded-
unfolded states and a long lifetime at each given state [2].
Piana et al. [2] calculated the fragment’s thermodynamic
properties from the population ratio of folded to unfolded
states via the transition-based assignment [9] aided by the
experimental folded structure [35]. In particular, the differ-
ence in entropy between folded-unfolded states (ΔSf) was
estimated from the states’ lifetimes (Table S5). Using our
compression framework, along with the above-mentioned
frame assignments into two ensembles, we attained
the backbone’s entropy values of the folded-unfolded
states [22].
Moreover, the assignment to either of the two states can

be done using a sliding entropy estimate from lossless
compression, without any a priori experimental input. This
scheme can potentially detect yet unidentified, competing,
low free-energy structures which eluded experimental
observation. In Fig. 4(a) we show SA evaluated for
sequences of configurations within a sliding window of
length τw through the timeline of a simulation. At each time
point t, configurations sampled by the simulation between t
and tþ τw are preprocessed and compressed, to arrive at
SAðtÞ [22]. We chose the window length τw ¼ 0.4 μs as a
reasonable compromise between convergence of SA and
time resolution [22]. This choice limits our observations to
dynamic processes slower than the chosen time window.
Figure 4(a) clearly demonstrates the correspondence
between low SA and Piana’s preassigned folded states
(shaded areas).
Using these sliding-window SA values, we can now

construct an enthalpy-entropy population diagram
[Fig. 4(b)] [22]; a valley between clustered events in the
SA-H plot allows us to assign the folded-unfolded states,
without a priori experimental knowledge, with 95.3%–
96.3% agreement [22] allowing the low free-energy folded
structure to be extracted from the simulation and compared
to the experimental crystal structure [Fig. 4(c)]. In agree-
ment with Piana’s assignments, changes in the ratio
between folded-unfolded populations are clearly revealed
by SA distributions, as simulation temperature is varied
[Fig. 4(d), Table S5].
Following an assignment to the two folded-unfolded

ensembles, we can now use our method to directly estimate
the entropic difference between the ensembles. In order to
reduce spurious effects resulting from time correlations
between neighboring frames, we resampled each ensemble
(folded-unfolded) separately [22]. In the following, we
optimize the number of coarse-grained dihedral angles, as
described above, and estimate each ensemble’s entropy
value using lossless compression. The difference between
the estimated values (ΔSA) is given in Table S5. We note

that ΔSA represents only the protein backbone’s entropic
contribution, as the information is taken solely from the
dihedral angles. Further contributions, originating from the
solvent, side chains, or other solutes may contribute as well
to the overall entropy difference. These contributions will
be addressed in future work.
By construction, the successful operation of compression

algorithms is derived from identifying domains that repeat
within 1D datasets. This is of great convenience for
effectively 1D objects such as polymers and proteins.
We show that lossless-compression algorithms allow effi-
cient estimation of entropy in a wide variety of physical
systems, including protein folding simulations, and without
any a priori knowledge about specific states. Additionally,
our framework can easily assess sufficient sampling,
ergodicity, and coarse-graining optimality for many-body
simulations. We expect that our methodology will be useful
for experimental systems [21] and additional athermal
models, where entropy estimation is hard or inaccessible.
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FIG. 4. (a) Representative scan through the Villin headpiece
simulation timeline, with mean-subtracted SA (blue bars), over-
laying regions identified as folded using transition-based assign-
ment (gray area). (b) Enthalpy–entropy population diagram at
T ¼ 360 K. (c) Protein structure collected from randomly
sampled low SA states simulated at 360 K (red) overlaid with
the protein fragment (2F4K) crystal structure (blue) [7,35],
generated with PyMOL [36]. (d) Distributions of sliding-window
SA, at three simulation temperatures.
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Entropy is defined for equilibrated or almost-stationary
systems. However, SA estimates can be useful also away
from equilibrium, to detect divergent trends in information
content and disorder [21]. Our results demonstrate modern
MD simulations have sufficient statistics to allow entropy
estimation even for small fragments of simulated trajecto-
ries, and that lossless-compression algorithms can be
conveniently used for this estimation. The resulting obser-
vation of continuous entropy dynamics, including the
detection of transient ordered states (i.e., a protein’s fold),
opens a new avenue in characterizing dynamics of complex
systems.
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