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We consider the slow and athermal deformations of amorphous solids and show how the ensuing
sequence of discrete plastic rearrangements can be mapped onto a directed network. The network topology
reveals a set of highly connected regions joined by occasional one-way transitions. The highly connected
regions include hierarchically organized hysteresis cycles and subcycles. At small to moderate strains this
organization leads to near-perfect return point memory. The transitions in the network can be traced back to
localized particle rearrangements (soft spots) that interact via Eshelby-type deformation fields. By linking
topology to dynamics, the network representations provide new insight into the mechanisms that lead to
reversible and irreversible behavior in amorphous solids.
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A wide variety of condensed matter systems exhibit
memory effects, since their present states are a result of
their past history, which is encoded in their structure. Often
all or at least part of such histories may be inferred from
measurements [1]. Examples include shape memory mate-
rials, disordered magnets, spin glasses, structural glasses
and granular matter, and magnetic and phase change
memory devices. In particular, memory effects in cyclically
driven (sheared) amorphous solids and colloidal suspen-
sions have been recently investigated through computer
simulations, experiments, and theoretical modeling [1–5].
For small to moderate deformations, upon repeated cyclic
loading, after a transient, these systems reach limit cycles in
which they traverse the same sequence of states during each
subsequent cycle [1–20].
In contrast, systems obeying the no-passing property, an

ordering of states that is preserved by the dynamics, exhibit
limit cycles immediately, i.e., without any transients.
Examples include either systems with no coupling at all,
such as the Preisach model [21], or systems that have only
positive couplings, such as depinning models and the
random field Ising model [22]. Theoretical studies show
that no-passing is a sufficient condition for return point
memory (RPM) [22,23], wherein a system remembers the
values at which the direction of an external driving field is
reversed. Negative couplings can break the no-passing
property. Indeed, in amorphous solids units of plastic
deformation—referred to as shear transformation zones
[24,25] or soft spots [26]—induce long-range quadrupolar
displacement fields of the type associated with Eshelby
inclusions [27,28] that provide equally many positive and
negative couplings with other locations of plastic rearrange-
ments. The no-passing property must be violated in these

systems, and one therefore expects that return point
memory should not hold either. Yet there are experimental
as well as numerical findings that are highly reminiscent of
return point memory [1,17]. Understanding memory effects
in amorphous solids appears thus to require a deeper
knowledge of the organization of states and transitions
among these than is presently available. We develop such
insights by introducing a novel method that maps the
deformation paths of amorphous systems to directed
graphs. As recently shown by one of us, RPM is a well-
defined property of such graphs that is easily identified
[29]. We construct such graphs from simulations of sheared
amorphous solids. Surprisingly, despite the fact that the
coupling is not strictly positive, which precludes no-
passing, these systems show remarkably accurate, if not
perfect, return point memory along with a near-perfect
hierarchy of cycles and subcycles. We trace the smallest
loops to local bistable hysteretic regions undergoing pure
shear displacements [26]. The relatively rare cases in which
RPM is violated can be associated with certain destabiliz-
ing soft-spot interactions that lead to plastic events which
provide one-way escapes from limit cycles (“rabbit holes”).
We simulate a two-dimensional binary mixture of equal

numbers of small and large particles (512 each) with size
ratio 1.4, interacting with a radially symmetric potential
(described in Refs. [9,30]). Energy minimum structures
obtained from liquid configurations are subjected to small
strain steps of �Δγ ¼ 10−4 followed by energy minimi-
zation, implementing the athermal quasistatic protocol used
in previous studies. We thus always consider configurations
at mechanical equilibrium at any given strain. Starting with
a configuration at some strain γ, upon increasing strain, the
configuration will deform elastically until a critical strain
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γþ is reached where a plastic rearrangement of particles
occurs. Likewise, starting from the same initial configura-
tion, and decreasing the strain, the system undergoes elastic
deformations until a critical strain γ− < γ is reached, when
another plastic event occurs [31].
We regard the set of stable configurations, whose

members are continuously transformable into each other
under strain changes, as one abstract state which we call a
mesostate. The strain interval γ− < γ < γþ over which
purely elastic deformations are possible we call the stability
range γ� of a mesostate. When a configuration of the
mesostate is sheared to γþ, a plastic event leads to a
configuration, which belongs to a new mesostate. Likewise,
straining in the negative direction to γ− leads to a plastic
transition to a configuration belonging to a third mesostate.
The potential energy associated with mesostates and their
transitions is sketched in Fig. 1(a). The mesostate tran-
sitions are history independent: whenever the system is in a
configuration a belonging to mesostate A, it must transit to
the same pair of mesostates when the strain is increased to
γþðAÞ or reduced to γ−ðAÞ. These transitions can be
represented as a graph where each node is a mesostate A
and two outgoing arrows specify the transitions to the
mesostates that are reached after the plastic events at γ�ðAÞ
[5,29]. These transitions, together with their thresholds γ�,
suffice to prescribe the athermal quasistatic response of the
system to arbitrary shearing protocols [29]. We use the
numerical simulations to assemble a catalog of mesostates.
For each state A we record the values of γ�ðAÞ and specify
the two mesostates into which A is mapped when
γ ¼ γ�ðAÞ. We limit our catalog to mesostates that can
be reached from a chosen reference state O in at most l ¼
25 transitions and construct a transition graph from a
reference configuration O at zero strain. A sample graph
with N ¼ 1416 mesostates is shown in Fig. 1(b) and
exhibits treelike features as well as regions with high
interconnections [31]. A detailed discussion of general
features will be done elsewhere [32]. Transitions under

forward (positive) and backward (negative) shear are
denoted by gray or orange arrows, respectively. Certain
transitions are emphasized by black and red highlights,
respectively [33].
To understand a typical limit cycle in terms of the

transition graph, starting in O and using our catalog we can
trace out the set of mesostates obtained for periodic shear
with strain 0 → γmax → −γmax → 0 → � � �. Figure 2(a)
shows the mesostates and transitions of the γmax ¼ 0.05
limit cycle and its vicinity. With the limit cycle in state X at
−γmax and as the strain increases, the system undergoes a
sequence of plastic events (black arrows), passing through
the mesostates O0; P;Q0; Q; R; A0; Y 0 and reaching the
upper end point Y at þγmax. Subsequently reducing the
strain back to −γmax, the dynamics follows the red arrows,
passing through A;B;C; C0; E; F and eventually returning
to the lower end point X. Reversing the shearing direction
anywhere along the decreasing (red) branch will lead to the
upper end point Y. Likewise, reversal along the increasing
(black) branch leads to X, except for R, where the strain
reversal leads via Z to an exit from the loop. Trajectories
that return to an end point upon a strain reversal necessarily
form subcycles. For example, the pair of states ðC; YÞ is the
end point of a subcycle. In fact, a hierarchical structure of
cycles nested within cycles is apparent. This structure is
highly reminiscent of return point memory, as discussed
below.
The state transition graph of Fig. 2(a) has several

recurring network transition patterns or “motifs,” which
we depict in Figs. 2(b)(i)–2(b)(iv). Inspecting the corre-
sponding particle displacements, we see these motifs
arising from transitions, with hysteresis, between two states
in localized soft spots. The simplest motif is a reversible
transition which involves only one soft spot, Fig. 2(b)(i),
such as transitions between states X and O0 or O0 and P in
Fig. 2(a). Next, transitions between X and P turn out to
involve two soft spots that change states one after the other
as the strain is increased, or subsequently reduced, leading
to a line reversible motif, depicted in Fig. 2(b)(ii). Another
pattern involves two soft spots which change their states in
the same order during an increase or decrease of strain,
leading to the loop reversible motif, Fig. 2(b)(iii), e.g., the
pattern highlighted in blue in Fig. 2(a) involving transitions
between T 0, Q0, Q, and T. The last, and perhaps most
important, motif we observe is due to avalanches. Here two
or more two-level systems change states one after the other
in one direction of strain, but return together to their initial
state upon strain reversal; see Fig. 2(b)(iv). The region
highlighted in pink in Fig. 2(a) as well as the transitions of
Fig. 2(a) marked (23) and (234) in the subcycle ðC0; Y 0Þ are
avalanches. The presence of avalanches implies that soft
spots interact with each other. The state of one soft spot can
enable or even disable the ability of another soft spot to
switch states. The interactions between soft spots are
mediated via an Eshelby-like quadrupolar deformation
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FIG. 1. Mesostates and transition graphs. (a) Potential energy U
of particle configurations associated with an initial mesostate
(green segment) and the two mesostates it transits into when the
applied strain γ (x axis) becomes γ�. (b) The network generated
starting from a zero-strain configuration O. The 1 cycle transient
and limit cycle (between X and Y) for γ ¼ 0.05 are marked in
black and red.
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field, arising from a change of state of one soft spot during a
plastic event. They are shown in Fig. 2(c) for the four
transitions making up the avalanche motif of Fig. 2(b)(iv).
Here the soft spot labeled 2 can switch its state back and
forth when soft spot 3 remains in one state. However, after
3 also changes its state, both 2 and 3 reverse their states
together. Another, rather striking, example for such soft-
spot interactions is the pair of loops ðC0; Y 0Þ and ðC; YÞ in
Fig. 2(a), shaded in green, which have identical topology.
Transitions in these loops are due to the same 5 soft spots,
including 2 and 3 of Fig. 2(c). We have labeled them
accordingly as 1–5 and marked the transitions they generate
in loop ðC0; Y 0Þ. The change from one loop to the other is
due to a sixth soft spot. The locations in the sample of all
six soft spots are marked in Fig. 3(a). Figures 3(b) and 3(c)
illustrate the binary encoding of the mesostates in terms of
the states of each soft spot (see the caption for further
details). Figure 3(d) depicts the nonmonotonic changes of
switching strains γ�i for soft spots 1–5 in dependence on the
state soft spot 6. This nonmonotonic behavior is consistent
with the quadrupolar nature of the elastic deformation (note
that this is a more complicated example of loop-reversible
dynamics).

The property of the system to return to the cycle’s end
points upon reversal of the forcing, when starting from a
mesostate on a limit cycle or on any of its subcycles, is
called loop return point memory (LRPM). It is a gener-
alization of RPM that does not require the existence of the
no-passing property [29]. The limit cycle ðX; YÞ of Fig. 2(a)
would have LRPM if two transitions were rewired: the
orange arrow from Z should point to X, while the gray
arrow from W should lead to R. The first rewiring ensures
that a strain reversal at R leads to the lower end point X,
while the second rewiring makes sure that in any subcycle
of the now corrected cycle ðR;XÞ strain reversals lead to its
end pointsX and R. With 2 RPM violating transitions out of
84, the limit cycle of Fig. 2(a) exhibits near-perfect RPM.
In fact, we have observed near-perfect RPM in limit cycles
for strain amplitudes up to at least γmax ¼ 0.0722; see
Sec. S2.2 in Supplemental Material for an example [31]. In
Fig. 2(d) we display the tree representation of the loop
hierarchy introduced in Ref. [29] for the γmax ¼ 0.05 limit
cycle whose end points are ðX; YÞ. Nodes of this tree
represent cycles. Starting from the root ðX; YÞ, each
generation represents a partition of the parent cycles into
two or three subcycles. The tree thus depicts the hierarchy
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FIG. 2. State transition graph of the γmax ¼ 0.05 limit cycle. (a) Detailed view of the mesostate transitions associated with the 0.05
limit cycles depicted in Fig. 1(b). Transitions out of the end points X and Y are marked as green triangles and will be ignored. Regions of
interest have colored backgrounds and refer to (b) and Fig. 3(c). (b) Network motifs involving one and two soft spots, (i) and (ii)–(iv),
respectively. Soft spots are shown as black ellipses with states corresponding to their orientation. Motif background color and transition
pattern highlighted in (a) coincide. (c) The particle displacements associated with the transitions of the avalanche motif in (iv) and (a).
(d) Tree representation of the hierarchy of loops and subloops making up the limit cycle shown in (a). Refer to text for details.
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of cycles under this partition. In a network with perfect
return point memory, this will be a strict genealogical tree
with each child loop having precisely one parent loop. The
RPM violations alter this structure. We have indicated the
loops involved in RPM violations by gray diamonds,
placing their would-be end points in angular brackets.
The transition from Z is like a step down a rabbit hole, as

it leads to a part of the mesostate network from where (at
l ¼ 25) there seems to be no sequence of transitions that
will bring the system back; see Fig. 4. This is a one-way
transition and we have marked it with the diode sign. Such
transitions have been discussed by Newman and Stein who
noted that multidimensional ragged landscapes involve
one-way “outlets” [34]. We believe that this one-way
transition is caused by the permanent state change of
one or more soft spots. The transition from W to Y 0 is
RPM violating, since it takes a shortcut by going directly to
Y 0 without having R as an intermediate mesostate. It turns

out that the transition to Y 0 via R → A0 → Y 0 involves the
soft spot labeled as 5, see Fig. 2(a), and another two soft
spots. However, the alternative route R → V → W → Y 0 is
found to change the state of soft spot 5 during transition
V → W under increasing strain. W cannot transit into R
under a subsequent strain increase because soft spot 5 has
already changed its state when V → W.
The construction of a network of mesostates that

captures exclusively the plastic events provides a method-
ology that enables us to analyze in detail how memory is
encoded in periodically sheared amorphous solids. We are
thus able to explicitly address for the first time many
questions about memory formation phenomena observed in
these systems. In particular, we see that the system reaching
a limit cycle is a result of the two-level nature of most
plastic events and the property that in most cases inter-
actions modify the dynamics (and hence the network) in a
manner that does not impair reversibility. As a result, a
hierarchy of cycles and subcycles emerges.
At the same time, the transition network and its topology

provide a bird’s eye view on the athermal and quasistatic
dynamics of an amorphous solid subject to arbitrary strain
protocols. We believe that the prospect of relating the
network topology to the activation and deactivation dynam-
ics of interacting two-level systems provides a promising
direction for understanding the reversible and irreversible
features of the dynamics of amorphous solids and for
constructing models that capture it.
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FIG. 3. Limit cycles as interacting soft-spot systems. (a) Loca-
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plastic events of the cycle ðC0; YÞ in Fig. 2(a). (b) Schematic
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subcycles marked ½�0� and ½�1�. The two cycles are topologically
identical and the transitions in each are due to the same 5 soft
spots. Transition from one cycle to the other occurs via the state
change of a sixth soft spot. Labels next to the transitions in
subcycle ½�0� indicate the soft spots involved (same in subcycle
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ual states of soft spots. The transitions marked (23) and (234) are
avalanches. (d) “Spectroscopic” plot showing the nonmonotonic
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