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We formulate the Kohn-Sham (KS) equations for the fractional quantum Hall effect by mapping the
original electron problem into an auxiliary problem of composite fermions that experience a density
dependent effective magnetic field. Self-consistent solutions of the KS equations demonstrate that our
formulation captures not only configurations with nonuniform densities but also topological properties
such as fractional charge and fractional braid statistics for the quasiparticles excitations. This method
should enable a realistic modeling of the edge structure, the effect of disorder, spin physics, screening, and
of fractional quantum Hall effect in mesoscopic devices.
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The Kohn-Sham density functional theory (KS-DFT)
uses the electron density to construct a single particle
formalism that incorporates the complex effects of many-
particle interactions through a universal exchange correla-
tion functional [1]. It is an invaluable tool for treating
systems of interacting electrons spanning the disciplines of
physics, chemistry, materials science, and biology. Very
little work has been done [2–4] toward applying this
method to the fractional quantum Hall effect (FQHE)
[5], which is one of the most remarkable manifestations
of interelectron interactions [6,7]. The reasons are evident.
To begin with, even though the KS-DFT is in principle
exact, its accuracy, in practice, is dictated by the availability
of exchange correlation (xc) potentials, and it works best
when the xc contribution is small compared to the kinetic
energy. In the FQHE problem, the kinetic energy is
altogether absent (at least in the convenient limit of very
high magnetic fields) and the physics is governed entirely
by the xc energy. A more fundamental impediment is that,
by construction, the KS-DFT eventually obtains a single
Slater determinant solution, whereas the ground state for
the FQHE problem is an extremely complex, filling factor-
dependent wave function that is not adiabatically connected
to a single Slater determinant. In particular, a mapping into
a problem of noninteracting electrons in a KS potential will
produce a ground state that locally has integer fillings,
whereas nature displays preference for certain fractional
fillings. Finally, a mapping into a system of weakly
interacting electrons will also fail to capture topological
features of the FQHE, such as fractional charge and
fractional braid statistics for the quasiparticles [6,8,9]. At
a fundamental level, these difficulties can be traced back to
the fact that the space of ground states in the lowest Landau
level (LLL) is highly degenerate for noninteracting elec-
trons, and the interaction causes a nonperturbative reor-
ganization to produce the FQHE. We note here that the
application of KS-DFT to “strictly correlated electrons” is

in general an important problem and has previously been
considered in other contexts [10–13].
To make progress, we exploit the fact that the strongly

interacting electrons in the FQHE regime turn into weakly
interacting composite fermions, namely bound states of
electrons and an even number (2p) of quantum vortices
[7,14]. This suggests using an auxiliary system of non-
interacting composite fermions to construct a KS-DFT
formulation of the FQHE, which is the approach we follow
in this work. A crucial aspect of our KS theory is that it
properly incorporates the physics of the long range “gauge
interaction” between composite fermions induced by the
Berry phases due to the quantum mechanical vortices
attached to them, which is responsible for the topological
properties of the FQHE, such as fractional charge and
statistics [7,15,16]. That effectively amounts to using a
nonlocal exchange-correlation potential. Earlier DFT for-
mulations of the FQHE [2–4] employ a local exchange-
correlation potential and thus do not capture the topological
features of the FQHE.
We consider the Hamiltonian for fully spin polarized

electrons confined to the LLL:

H ¼ Ĥee þ
Z

drVextðrÞρ̂ðrÞ: ð1Þ

Within the so-called magnetic-field DFT [17–20], the
Hohenberg-Kohn (HK) theorem also applies to interacting
electrons in the FQHE regime and implies that the ground
state density and energy can be obtained by minimizing the
energy functional

E½ρ� ¼ F½ρ� þ
Z

drVextðrÞρðrÞ; ð2Þ

where the HK functional is given by [21,22]
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F½ρ� ¼ min
ΨLLL→ρðrÞ

hΨLLLjĤeejΨLLLi≡ Exc½ρ� þ EH½ρ�: ð3Þ

(The B dependence of the energy functional has been
suppressed for notational convenience). Here Exc½ρ� and
EH½ρ� are the xc and Hartree energy functionals of electrons
and ΨLLL represents a LLL wave function. The conven-
tional KS mapping into noninteracting electrons is prob-
lematic due to the absence of kinetic energy.
We instead map the FQHE into the auxiliary problem of

“noninteracting” composite fermions. Composite fermions’
most fundamental property is that they experience an
effective magnetic field. In particular, the integer quantum
Hall effect of composite fermions at ν� ¼ nmanifests as the
FQHE of electrons at ν ¼ n=ð2pn� 1Þ. (The quantities
referring to composite fermions are marked by an asterisk
below.) Even though we use the term noninteracting, the
Berry phases associated with the bound vortices induce a
long range gauge interaction between composite fermions,
as a result of which they experience a density dependent
magnetic field B�ðrÞ ¼ B − 2ρðrÞϕ0, where ϕ0 ¼ hc=e is a
flux quantum. We therefore write

�
1

2m�

�
pþe

c
A�ðr;½ρ�Þ

�
2

þV�
KSðrÞ

�
ψαðrÞ¼ ϵαψαðrÞ; ð4Þ

where V�
KSðrÞ is the KS potential for composite

fermions, m� is the composite-fermion (CF) mass, and
∇ ×A�ðr; ½ρ�Þ ¼ B�ðrÞ. As a result of the gauge interac-
tion, the solution for any given orbital depends, through the
ρðrÞ dependence of the vector potential, on the occupation
of all other orbitals. Equation (4) must therefore be solved
self-consistently; i.e., the single-CF orbitals ψαðrÞ must
satisfy the condition that the ground state density ρðrÞ ¼P

α cαjψαðrÞj2, where cα ¼ 1 (0) for the lowest energy
occupied (higher energy unoccupied) single-CF orbitals, is
equal to the density that appears in the kinetic energy of the
Hamiltonian. The energy levels of Eq. (4) are Landau-like
levels of composite fermions, called Λ levels (ΛLs). For the
special case of a spatially uniform density and constant
V�
KS, Eq. (4) reduces to the problem of noninteracting

particles in a uniform B�. Importantly, once a self-
consistent solution is found for a given V�

KSðrÞ, for the
corresponding density in the Hamiltonian in Eq. (4), the
ground state satisfies, by definition, the self-consistency
condition and also the variational theorem, and the standard
proof for the HK theorem follows. See Supplementary
Material [23] for details. We define the CF kinetic energy
functional as

T�
s ½ρ� ¼ min

Ψ→ρ
hΨj 1

2m�
XN
j¼1

�
pj þ

e
c
A�ðrj; ½ρ�Þ

�
2

jΨi; ð5Þ

where we perform a constrained search over all single
Slater determinant wave functions Ψ that correspond to the

density ρðrÞ, following the strategy of the generalized KS
scheme [23,24].
The next key step is to write Exc½ρ� ¼ T�

s ½ρ� þ E�
xc½ρ�, or

F½ρ� ¼ T�
s ½ρ� þ EH½ρ� þ E�

xc½ρ�. (Note that T�
s ½ρ� and thus

Exc½ρ� is a nonlocal functional of the density.) Such a
partitioning of F½ρ� can, in principle, always be made given
our assumptions but is practically useful only if the T�

s ½ρ�
and EH½ρ� capture the significant part of F½ρ�, and the
remainder E�

xc½ρ�, called the exchange-correlation energy of
composite fermions, makes a relatively small contribution.
This appears plausible given that the CF kinetic energy
term captures the topological aspects of the FQHE, and also
because the model of weakly interacting composite fer-
mions has been known to be rather successful in describing
a large class of experiments.
Minimization of the energy E½ρ� ¼ T�

s ½ρ� þ EH½ρ� þ
E�
xc½ρ� þ

R
drVextðrÞρðrÞ with respect to ρðrÞ ¼P

α cαjψαðrÞj2, subject to the constraint
R
drψ�

αðrÞψβðrÞ ¼
δαβ, yields [23] Eq. (4) with

V�
KS½ρ; fψαg� ¼ VHðrÞ þ V�

xcðrÞ þ VextðrÞ þ V�
TðrÞ; ð6Þ

where VHðrÞ ¼ δEH=δρðrÞ and V�
xcðrÞ ¼ δE�

xc=δρðrÞ
are the Hartree and CF-xc potentials. The nonstandard
potential

V�
TðrÞ ¼

X
α

cαhψαj
δT�

δρðrÞ jψαi ð7Þ

with T� ¼ ð1=2m�Þ½pþ ðe=cÞA�ðr; ½ρ�Þ�2 arises due to the
density dependence of the CF kinetic energy. V�

T describes
the change in T�

s to a local disturbance in density for a fixed
choice of the KS orbitals. Equations (4)–(7) define our KS
equations. Because V�

TðrÞ depends not only on the density
but also on the occupied orbitals, we are actually working
with what is known as the “orbital dependent DFT” [25].
Having formulated the CF-DFT equations, we now

proceed to obtain solutions for some representative cases.
The primary advantage of our approach is evident without
any calculations. Take the example of a uniform density
FQHE state at ν ¼ n=ð2pn� 1Þ. It is an enormously
complicated state in terms of electrons but maps into the
CF state at filling factor ν� ¼ n with a spatially uniform
magnetic field, thereby producing the correct density
without any fine-tuning of parameters or averaging.
For nonuniform densities, the state of noninteracting
composite fermions will produce configurations where
composite fermions locally have ν� ≈ n, which corresponds
to an electronic state where the local filling factor is
ν ≈ n=ð2pn� 1Þ, which is a reasonable description, and
certainly a far superior representation of the reality than any
state of noninteracting electrons.
For a more quantitative treatment we need a model for the

xc energy. To this end, we begin by making the local density
approximation (LDA) to write E�

xc½ρ� ¼
R
drϵ�xc½ρðrÞ�ρðrÞ,
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where ϵ�xc½ρ� is the xc energy per CF. In the following, we
express all lengths in units of the magnetic length lB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
and energies in units of e2=ϵlB, where ϵ is the

dielectric constant of the background. The density is related
to the local filling factor as νðrÞ ¼ ρðrÞ2πl2B. We take the
model ϵ�xc½ρ�¼aν1=2þðb−f=2Þνþg, with a ¼ −0.78213,
b ¼ 0.2774, f ¼ 0.33, g ¼ −0.04981. The form is
chosen so that the sum of ϵ�xc and CF kinetic energy
accurately reproduces the known electronic xc energies at
ν ¼ n=ð2nþ 1Þ [23]. (The term aν1=2 is chosen to match
with the known classical value of energy of the Wigner
crystal in the limit ν → 0 [26].) Although optimized for
ν ¼ n=ð2nþ 1Þ, we will uncritically assume this form of
ϵ�xcðνÞ for all ν. Our aim in this work is to establish the proof-
of-principle validity and the applicability of our approach
and its ability to capture topological features; a more
extensive search for the most optimal E�

xc is left for future
work. The topological properties we focus on in this
Letter are largely robust against the precise form of the
xc energy. The xc potential is given by V�

xc ¼ δE�
xc=δρðrÞ ¼

3
2
aν1=2 þ ð2b − fÞνþ g. We note that while the CF xc

potential V�
xc is a continuous function of density, the electron

xc potential Vxc has derivative discontinuities at ν ¼
n=ð2n� 1Þ, arising from the kinetic energy of the composite
fermions [23].
In our applications below,wewill considerN electrons in a

potential VextðrÞ ¼ −
R
d2r0 ρbðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr−r0j2þd2
p generated by a two-

dimensional uniform background charge density ρb ¼
ν0=2πl2B distributed on a disk of radiusRb satisfyingπR2

bρb ¼
N at a separation of d from the plane of the electron
liquid. This produces an electron system at filling factor
ν ¼ ν0 in the interior of the disk. We use ν0 ¼ 1=3 and
d=lB → 0 in our calculations below. For the vector potential,
we assume circular symmetry and choose the gauge
A�ðrÞ¼ ½rBðrÞ=2�eϕ,withBðrÞ¼ð1=πr2ÞR r

0 2πr
0B�ðr0Þdr0.

We obtain self-consistent solutions of Eqs. (4)–(7) by
an iterative process. Even though we are interested in the
zero temperature limit in this Letter, we sometimes find it
useful to begin with a finite temperature kBT ∼ 0.1,
and anneal the system to approach successively lower
temperatures [23,27].
As a first application, we consider the density profile of

the ν0 ¼ 1=3 droplet. Figure 1 shows the density profiles
calculated from Laughlin’s trial wave function [6] as well
as that obtained from exact diagonalization at total angular
momentum L ¼ 3NðN − 1Þ=2 [28]. Also shown are the
density profiles obtained from the above KS equations.
The density profile from our CF-DFT captures that
obtained in exact diagonalization well, especially for
N ≥ 10. Remarkably, it reproduces the characteristic shape
near the edge where the density exhibits oscillations and
overshoots the bulk value before descending to zero. This
qualitative behavior is fairly insensitive to the choice of

V�
xc, and is largely a result of the self-consistency require-

ment in Eq. (4) [23]. The Supplemental Material [23]
considers other configurations, and also shows that a mean-
field approximation without self-consistency is highly
unsatisfactory for the density profile.
We next consider screening of an impurity with charge

Q ¼ �e at a height h directly above the center of the FQHE
droplet. The strength of its potential

V impðrÞ ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrj2 þ h2
p ð8Þ

can be tuned by varying h. Figures 2(a) through 2(e) show
the density ρ for certain representative values of h. It is
important to note that the CF orbitals in the self-consistent
solution form strongly renormalized ΛLs (i.e., include
the effect of mixing between the unperturbed ΛLs).
Figures 2(f) through 2(j) show the occupation of the
ΛLs. The presence of the impurity either empties some
CF orbitals from the lowest ΛL or fills those in higher ΛLs.
Each empty orbital in the lowest ΛL corresponds to a
charge 1=3 quasihole, whereas each filled orbital in an
excited ΛL corresponds to a charge −1=3 quasiparticle [7].
The excess charge is defined as δq ¼ R

jrj<r0
d2r½ρ0 − ρðrÞ�

in a circular area of radius r0 ¼ 10lB around the origin.
Figure 2(p) shows how δq and L�

tot change as a function of
the impurity potential at the origin V impðr ¼ 0Þ ¼ −Q=h.

FIG. 1. Density profile for 1=3 droplets. This figure shows the
density of a system of N composite fermions. ρ0 is the density for
Laughlin’s 1=3 wave function [6], and ρED is obtained from exact
diagonalization (ED) of the Coulomb interaction at total angular
momentum Ltotal ¼ 3NðN − 1Þ=2 [28]. The density ρDFT is
calculated from the solution of the KS equations for composite
fermions in an external potential produced by a uniform pos-
itively charged disk of radius R so that πR2ρb ¼ N. The total
angular momentum of the CF state is L�

tot, which is related to
the total angular momentum of the electron state by Ltot ¼
L�
tot þ NðN − 1Þ [29]. The CF-DFT solution produces L�

tot ¼
NðN − 1Þ=2, which is consistent with Ltot ¼ 3NðN − 1Þ=2. All
densities are quoted in units of ð2πl2BÞ−1, the density at ν ¼ 1. We
take ρb ¼ 1=3.
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The excess charge δq is seen to be quantized at an integer
multiple of �1=3.
We finally come to fractional braid statistics. Particles

obeying such statistics, called anyons, are characterized by
the property that the phase associated with a closed loop
of a particle depends on whether the loop encloses other
particles. In particular, for Abelian anyons, each enclosed
particle contributes a phase factor of ei2πα, where α is
called the statistics parameter. [For noninteracting bosons

(fermions), α is an even (odd) integer.] In the FQHE, the
quasiparticles are excited composite fermions and quasi-
holes are “missing” composite fermions. Let us consider
quasiholes of the 1=3 state for illustration. A convenient
way to ascertain the statistics parameter within our KS-
DFT is to ask how the location of a quasihole in angular
momentum m orbital changes when another quasihole is
inserted at the origin in the m ¼ 0 orbital. Let us first recall
what is the expected behavior arising from fractional braid
statistics. In an effective description, the wave function of a
single quasihole in angular momentum m orbital is given
by zme−jzj2=4l�2 (z≡ x − iy), which is maximally localized
at rex ¼ ð2mÞ1=2l� ¼ ð6mÞ1=2lB, with l� ¼

ffiffiffi
3

p
lB (as appro-

priate for ν0 ¼ 1=3). When another quasihole is present at
the origin, it induces an additional statistical phase factor
ei2πα, where α is the statistics parameter. This changes the
wave function of the outer quasihole to zm−αe−jzj2=4l�2 ,
which is now localized at r0ex ¼ ½6ðm − αÞ�1=2lB. We now
determine α from our KS-DFT formalism.
A quasihole can be treated in a constrained DFT [30]

wherein we leave a certain angular momentum orbital
unoccupied. Figures 3(a) and 3(b) show the self-consistent
KS density profiles of the state with a quasihole in angular
momentum m, without and with another quasihole in the
m ¼ 0 orbital. The locations of the outer quasihole, rDFT
and r0DFT, are determined from the minimum in the density.
These are in reasonable agreement with the expected
positions rex and r0ex (provided m > 3). More importantly,
the calculated statistics parameter α≡ ðr2DFT − r02DFTÞ=6l2B is
in excellent agreement with the expected fractional value of
α ¼ 2=3 [7,8] provided that the two quasiparticles are not

FIG. 2. Screening and fractional charge. This figure shows how
the 1=3 state screens a charged impurity of strength Q ¼ �e
located at a perpendicular distance h from the origin. (a)–(e),
(k)–(o) Self-consistent density ρDFTðrÞ. Also shown are ρ0DFTðrÞ,
the “unperturbed” density (for Q ¼ 0), and ρb, which is the
density of the positively charged background. (f)–(j) Occupation
of renormalized ΛLs in the vicinity of the origin; each composite
fermion is depicted as an electron with two arrows, which
represent quantized vortices. (The single particle angular mo-
mentum is given by m ¼ −n;−nþ 1;… in the nth ΛL.)
(p) Evolution of the excess charge δq and the total CF angular
momentum L�

tot as a function of the impurity potential strength at
the origin V impðr ¼ 0Þ ¼ Q=h. Change in the charge at the origin
is associated with a change in L�

tot. The system contains a total of
N ¼ 50 composite fermions. For h ¼ ∞, we have L�

tot ¼ 1225
and δq ¼ 0. For one and two quasiholes, we have L�

tot ¼ 1225
and 1275, whereas for one, two, and three quasiparticles we have
L�
tot ¼ 1175, 1127, and 1078, precisely as expected from the

configurations in (f)–(j) [29].

FIG. 3. Fractional braid statistics. (a) Electron density for a
system with a quasihole in angular momentum m orbital, with m
changing from 1 to 20 for the curves from the bottom to the top.
(Each successive curve has been shifted up vertically for clarity.)
(b) The same in the presence of another quasihole at the origin.
For each m, we indicate the expected position of the outer
quasihole (red cross) as well as the position obtained from the
DFT density determined by locating the local minimum (blue
circle). (c) Calculated statistics parameter α≡ ðr2DFT − r02DFTÞ=6l2B.
The calculation has been performed for N ¼ 200 composite
fermions at ν0 ¼ 1=3.
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close to one another, indicating that our method properly
captures the physics of fractional braid statistics. The small
deviation from 2=3 for large m arises from the fact that the
density of the unperturbed system itself has slight oscil-
lations due to the finite system size, which causes a slight
shift in the position of the local minimum due to an
additional quasihole. Correcting for that effect produces a
value much closer to α ¼ 2=3, as illustrated in the
Supplemental Material [23].
In conclusion, we have formulated in this Letter a Kohn-

Sham DFT that faithfully captures the topological charac-
teristics of the FQHE state, such as fractional charge,
fractional statistics, and effective magnetic field. This opens
a new strategy for exploring a variety of problems of
interest. Aside from the nature of FQHE edges, our
approach should allow a quantitative treatment of the effect
of smooth disorder, as well as of correction due to Landau
level mixing and finite width through appropriate mod-
ifications of the xc potential. One can anticipate a gener-
alization of the KS-DFT to paired CF states supporting
non-Abelian excitations. Modeling of mesoscopic devices
should provide important insight into the optimal condi-
tions for the measurement of fractional statistics through
interference experiments (e.g., Ref. [31]).

We are grateful to Gerald Knizia, Andre Laestadius, Paul
Lammert, Melvyn Levy, and Erik Tellgren for very useful
discussions and advice. We acknowledge financial support
from the U.S. Department of Energy under Grant No. DE-
SC0005042. Y. H. thanks Yang Ge, Jiabin Yu and PSU
DFT Cafe for illuminating help, and acknowledges partial
financial support from China Scholarship Council. Some of
the numerical calculations were performed using the
DiagHam package, for which we are grateful to its authors.
The numerical calculations were performed using
Advanced CyberInfrastructure computational resources
provided by the Institute for CyberScience at the
Pennsylvania State University. We thank the Indian
Institute Science, Bangalore, where part of this work
was performed, for their hospitality, and the Infosys
Foundation for making the visit possible.

[1] G. Giuliani and G. Vignale,Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, England,
2008).

[2] M. Ferconi, M. R. Geller, and G. Vignale, Phys. Rev. B 52,
16357 (1995).

[3] O. Heinonen, M. I. Lubin, and M. D. Johnson, Phys. Rev.
Lett. 75, 4110 (1995).

[4] J. Zhao, M. Thakurathi, M. Jain, D. Sen, and J. K. Jain,
Phys. Rev. Lett. 118, 196802 (2017).

[5] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).

[6] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[7] J. K. Jain, Composite Fermions (Cambridge University

Press, New York, 2007).
[8] B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984).
[9] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett.

53, 722 (1984).
[10] M. Seidl, Phys. Rev. A 60, 4387 (1999).
[11] M. Seidl, J. P. Perdew, and M. Levy, Phys. Rev. A 59, 51

(1999).
[12] P. Gori-Giorgi, M. Seidl, and G. Vignale, Phys. Rev. Lett.

103, 166402 (2009).
[13] F. Malet and P. Gori-Giorgi, Phys. Rev. Lett. 109, 246402

(2012).
[14] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[15] G. S. Jeon, K. L. Graham, and J. K. Jain, Phys. Rev. B 70,

125316 (2004).
[16] Y. Zhang, G. J. Sreejith, N. D. Gemelke, and J. K. Jain,

Phys. Rev. Lett. 113, 160404 (2014).
[17] C. J. Grayce and R. A. Harris, Phys. Rev. A 50, 3089 (1994).
[18] W. Kohn, A. Savin, and C. A. Ullrich, Int. J. Quantum

Chem. 100, 20 (2004).
[19] E. I. Tellgren, S. Kvaal, E. Sagvolden, U. Ekström, A. M.

Teale, and T. Helgaker, Phys. Rev. A 86, 062506 (2012).
[20] E. I. Tellgren, A. Laestadius, T. Helgaker, S. Kvaal, and

A.M. Teale, J. Chem. Phys. 148, 024101 (2018).
[21] M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
[22] E. H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).
[23] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.176802 which in-
cludes background information, a proof of the Hohenberg-
Kohn theorem for noninteracting composite fermions, a
generalization to finite temperatures, details of how the KS
equation is numerically solved, and a discussion of the
importance of self-consistency.

[24] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy,
Phys. Rev. B 53, 3764 (1996).

[25] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[26] L. Bonsall and A. A. Maradudin, Phys. Rev. B 15, 1959

(1977).
[27] A. Pribram-Jones, S. Pittalis, E. Gross, and K. Burke, in

Frontiers and Challenges in Warm Dense Matter (Springer,
New York, 2014), pp. 25–60.

[28] E. V. Tsiper and V. J. Goldman, Phys. Rev. B 64, 165311
(2001).

[29] J. K. Jain and T. Kawamura, Europhys. Lett. 29, 321 (1995).
[30] B. Kaduk, T. Kowalczyk, and T. Van Voorhis, Chem. Rev.

112, 321 (2012).
[31] J. Nakamura, S. Fallahi, H. Sahasrabudhe, R. Rahman, S.

Liang, G. C. Gardner, and M. J. Manfra, Nat. Phys. 15, 563
(2019).

PHYSICAL REVIEW LETTERS 123, 176802 (2019)

176802-5

https://doi.org/10.1103/PhysRevB.52.16357
https://doi.org/10.1103/PhysRevB.52.16357
https://doi.org/10.1103/PhysRevLett.75.4110
https://doi.org/10.1103/PhysRevLett.75.4110
https://doi.org/10.1103/PhysRevLett.118.196802
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.52.1583
https://doi.org/10.1103/PhysRevLett.53.722
https://doi.org/10.1103/PhysRevLett.53.722
https://doi.org/10.1103/PhysRevA.60.4387
https://doi.org/10.1103/PhysRevA.59.51
https://doi.org/10.1103/PhysRevA.59.51
https://doi.org/10.1103/PhysRevLett.103.166402
https://doi.org/10.1103/PhysRevLett.103.166402
https://doi.org/10.1103/PhysRevLett.109.246402
https://doi.org/10.1103/PhysRevLett.109.246402
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevB.70.125316
https://doi.org/10.1103/PhysRevB.70.125316
https://doi.org/10.1103/PhysRevLett.113.160404
https://doi.org/10.1103/PhysRevA.50.3089
https://doi.org/10.1002/qua.20163
https://doi.org/10.1002/qua.20163
https://doi.org/10.1103/PhysRevA.86.062506
https://doi.org/10.1063/1.5007300
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1002/qua.560240302
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.176802
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1103/RevModPhys.80.3
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.15.1959
https://doi.org/10.1103/PhysRevB.64.165311
https://doi.org/10.1103/PhysRevB.64.165311
https://doi.org/10.1209/0295-5075/29/4/009
https://doi.org/10.1021/cr200148b
https://doi.org/10.1021/cr200148b
https://doi.org/10.1038/s41567-019-0441-8
https://doi.org/10.1038/s41567-019-0441-8

