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The generation of ultrarelativistic polarized positrons during the interaction of an ultrarelativistic
electron beam with a counterpropagating two-color petawatt laser pulse is investigated theoretically. Our
Monte Carlo simulation, based on a semiclassical model, incorporates photon emissions and pair
productions, using spin-resolved quantum probabilities in the local constant field approximation, and
describes the polarization of electrons and positrons for the pair production and photon emission processes,
as well as the classical spin precession in between. The main reason for the polarization is shown to be the
spin asymmetry of the pair production process in strong external fields, combined with the asymmetry of
the two-color laser field. Employing a feasible scenario, we show that highly polarized positron beams,
with a polarization degree of ζ ≈ 60%, can be produced in a femtosecond timescale, with a small angular
divergence, ∼74 mrad, and high density, ∼1014 cm−3. The laser-driven polarized positron source raises
hope for providing an alternative for high-energy physics studies.
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Relativistic beams of polarized positrons have important
applications in high-energy physics, and solid-state phys-
ics. They are powerful probes for precise measurements of
the nucleon spin structure [1,2], for determining the
electroweak mixing angle [3], and for studying magnetic
properties and structural defects of materials [4,5], as well
as to test the standard model in the future International
Linear Collider (ILC) [6]. A key element for the physics
capability of ILC is the ability to provide intense
(3 × 1010=bunch) highly polarized electron (> 80% polari-
zation) and positron (30%–60% polarization) sources
[7–10]. While there are several methods for electron
polarization [11–15], it is much more demanding to obtain
polarized positron beams. For the latter, a two step method
has been commonly applied. First, circularly polarized γ
photons are produced, and they are then converted to
polarized positrons via pair production in a high-Z target.
Polarized γ photons can be generated by Compton back-
scattering [16,17] or a helical undulator [18–21]. However,
all of the existing schemes require challenging technical
upgrades to reach the ILC target parameters [9,22,23].
Recent developments of strong laser techniques, see,

e.g., Refs. [24–26], have raised hope for polarizing elec-
trons and positrons with laser fields. However, unfortu-
nately the laser field has an oscillating character, changing
the field direction in subsequent field cycles. As a conse-
quence, in a monochromatic laser field, the polarization of a
particle due to nonlinear Compton scattering is vanishing
[27–29] and is small in the case of a short laser pulse [30].
Recent progress in the theory shows that significant
polarization for electrons can be acquired in a rotating

electric field [31,32], which models antinodes of a circu-
larly polarized standing laser wave. However, the electrons
cannot be trapped in antinodes of a circularly polarized
standing wave [33]. In another development, it has been
shown recently [34] that with a fine-tuning of the ellipticity
of the symmetric laser field, the splitting of the particle
beam with respect to polarization can be achieved due to
spin-dependent radiation reaction. The same scheme is
employed in the pair production regime to split the created
positrons with respect to polarization [35].
The petawatt laser technology [36–39] enables another

potential method to produce polarized positrons via the
multiphoton Breit-Wheeler process [40], when e−eþ pairs
are produced due to a high-energy γ photon interacting with
a strong laser field, accompanied by multiple photon
absorption from a strong laser field (first demonstrated
in the famous SLAC experiment E-144 [41]). Recently
unpolarized electron-positron jets were generated in laser-
solid [42–44], and in laser-electron beam interactions [45].
Generally, the radiative polarization of electrons (posi-

trons) requires asymmetric laser fields, but remarkably, as
shown here, with a given asymmetric field the spin-
dependent asymmetry is stronger for pair production than
for photon emission. Consequently, the polarization of the
electrons (positrons) during pair production in that field
generally will outstrip the radiative polarization. In pre-
vious studies [46–48], spin-polarization effects in the
multiphoton Breit-Wheeler process have been considered
in plane wave laser fields mostly of moderate intensity. It
remained unclear if sizable polarization of positrons in
realistic strong laser fields is feasible. Photon polarization

PHYSICAL REVIEW LETTERS 123, 174801 (2019)

0031-9007=19=123(17)=174801(7) 174801-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.174801&domain=pdf&date_stamp=2019-10-22
https://doi.org/10.1103/PhysRevLett.123.174801
https://doi.org/10.1103/PhysRevLett.123.174801
https://doi.org/10.1103/PhysRevLett.123.174801
https://doi.org/10.1103/PhysRevLett.123.174801


effects in nonlinear QED, however, with averaging over
the spin of electrons (positrons) have been discussed in
Ref. [49].
In this Letter, we investigate theoretically the feasibility of

production of collimated and highly polarized ultrarelativ-
istic positron beams during interaction of an ultrarelativistic
electron beam with a counterpropagating two-color intense
laser pulse in the quantum radiation dominated regime;
see the setup in Fig. 1. During the interaction, γ photons
via nonlinear Compton scattering are generated, which
subsequently decay into electron-positron pairs via the
multiphoton Breit-Wheeler process. With Monte Carlo
simulations, we study the spin-resolved dynamics of elec-
trons and positrons during pair production and photon
emission processes, as well as during propagation in the
laser field. In our scheme, positrons aremostly polarized due
to the intrinsic asymmetry of spin-resolved pair production
probability in strong fields, combinedwith the asymmetry of
the two-color laser field configuration. As a result, an
ultrarelativistic positron beam with 60% polarization, with
uniformly distributed polarization within the divergence
angle, can be generated with realistic laser fields.
We employ a semiclassical Monte Carlo method [50–52]

to describe the electron (positron) spin-resolved dynamics
in a strong laser field. Photon emission and pair production
are simulated via spin-resolved quantum probabilities,
derived with the QED operator method under the local
constant field approximation (LCFA) [53]; see the details in
the Supplemental Material [54]. The LCFA has been
widely employed in strong-field QED studies [50–53]
and is applicable when the formation length of the process
is much smaller than the laser wavelength and the typical
size of the electron trajectory [40,55]. In a laser field, the
latter requires ξ≡ jejE0=ðmωÞ ≫ 1, with the invariant field
parameter ξ, the laser field amplitude E0, and the frequency
ω, while e and m are the electron charge and mass,
respectively (relativistic units with ℏ ¼ c ¼ 1 are used
throughout). The LCFA can fail in describing the low-
energy part of the radiation spectrum [56–59] and high-
energy asymptotics of radiative corrections [60], which are,

however, beyond the scope of this Letter; see the
Supplemental Material [54]. In our Monte Carlo algorithm,
the probabilities are combined with the statistical event
generator to determine whether or not a photon emission or
pair production process occurs. If a photon is emitted or an
electron-positron pair is created, the spins of the particles
after the process are determined with respect to the
instantaneous spin quantization axis along the rest frame
magnetic field [61], employing the corresponding spin-
resolved probabilities within the statistical procedure
[34,35] (applied recently also in Ref. [62]). Between
emission points, the particles are driven classically via
the Lorentz force and the spin dynamics is described with
the Bargmann-Michel-Telegdi equation [63–65]. The accu-
racy of our Monte Carlo code is confirmed by reproducing
previous results on radiative polarization [15,30,32,34,66]
and pair production [35,67,68]; see the Supplemental
Material [54].
We consider interaction of an intense two-color linearly

polarized laser pulse with a counterpropagating ultrarela-
tivistic electron beam; see Fig. 1. The field consists of two
copropagating laser pulses of λ1 ¼ 1 μm and λ2 ¼ 0.5 μm
wavelengths, and τp1 ¼ 10T1 and τp2 ¼ 20T2 pulse dura-
tions, respectively. The peak amplitudes of each field, E01

and E02, fulfill the ratio R≡ E01=E02 ¼ 2, i.e., ξ1=ξ2 ¼ 4
for the field parameters. We use ξ1, ξ2 ≫ 1 when the LCFA
is applicable [54], and comparisons with an improved
LCFA code [57] have shown only negligible amendments.
The phase difference between the two-color fields is chosen
as Δϕ ¼ 0 to obtain the maximum field asymmetry. The
beam waist size is 5λ1 for both laser pulses. The electron
beam of a cylindrical form has a longitudinal uniform
distribution and transverse Gaussian distribution, with a
standard deviation σ ¼ 0.4λ1 and beam length Le ¼ 10λ1;
the number of electrons in the bunch is Ne ¼ 106. The
initial kinetic energy spread of the electron bunch is
Δϵ=ϵ0 ¼ 0.02, and the angular divergence is 1 mrad.
When choosing the laser intensity and the electron

energy, we take into account that the pair production is
substantial when the quantum field parameter χγ ≳ 1,

where χγ;e ¼ jejℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðFμνpν
γ;eÞ2

q

=m3, with pγ;e being the

4-momentum of the γ photon and the electron, respectively,
and Fμν the total field tensor, which includes the total field
of the two laser fields. One may assume that, during
nonlinear Compton scattering, photon and electron ener-
gies are of the same order and may estimate χγ ∼ χe.
As the presently available laser intensities do not exceed

1022 W=cm2 [24], and for the electron energies via laser
wakefield acceleration, the electron energy is less than
10 GeV [69]; we choose as typical parameters the initial
electron energy ϵ0 ¼ 2 GeV and the laser full intensity
parameter ξ0 ¼ ξ1 þ ξ2 ¼ 83. The produced positron beam
parameters are summarized in Fig. 2. The total number of
produced positrons is Nþ ∼ 2 × 104, and they travel in a

FIG. 1. Scheme of laser-based polarized positron beam pro-
duction. An intense linearly polarized two-color laser pulse
collides head-on with an unpolarized relativistic electron beam,
resulting in emission of γ photons in a forward direction which
decay into polarized eþ and e−, with spin parallel and antiparallel
to the laser’s magnetic field direction, respectively, and with a
small divergence angle in the propagation direction.
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forward direction, with the full width at half maximum
(FWHM) of the angular distribution θþ ≈ 74 mrad; see
Figs. 2(c) and 2(i). The average spin component of the pro-
duced positrons along the magnetic field direction (y axis)
has a nearly uniform angular distribution (ζ̄y ¼ 0.58)
within the FWHM; see Figs. 2(f) and 2(i). The angle
independence of the positron beam polarization renders
further collimation feasible without polarization damage.
The produced electrons have similar properties as positrons
but the opposite sign for polarization; see Figs. 2(b), 2(e),
and 2(h). The seed electrons have a narrower angular
distribution, as shown in Figs. 2(a) and 2(g), but the
polarization degree is significantly lower, ζ̄y ¼ −0.077,
than that of the produced e−eþ pairs. The latter indicates
that the polarization mechanisms for the seed electrons and
created particles are different.
To elucidate the reason for the significant polarization of

positrons in the two-color laser field, we compare the spin
dynamics in one- and two-color laser fields with ξ0 ¼ 83 in
Fig. 3(a). It can be seen that the polarization of seed
electrons oscillates in the laser fields for both cases, but
only in the two-color field do seed electrons acquire a small
ζ̄y. The reason is the almost complete symmetry in the laser
magnetic field direction in the case of a single color field,
and its asymmetry in the two-color field. After each photon

emission, the electrons (positrons) are more likely to flip
opposite to (along) the magnetic field direction in the
particle rest frame, which is approximately parallel (anti-
parallel) to the magnetic field direction By for electrons
(positrons) in the lab frame. This is because the spin-
resolved emission probability is in favor of spin-down for
electrons. As shown in Fig. 3(d), Wr↓=Wr > 50%, where
Wr is the radiation total probability and Wr↓ is the
probability with the finial spin antiparallel to the magnetic
field. Therefore, ζ̄y of seed electrons increases during
By < 0 and decreases during By > 0; see Fig. 3(a). In
the one-color laser pulse, ζ̄y oscillates symmetrically in
consecutive laser cycles and levels off to zeros after the
interaction. While the two-color field breaks this symmetric
pattern in ζ̄y oscillation, more electrons emit photons and
acquire ζy < 0 during By > 0, which results in a −7.7%
polarization at the end of the interaction; see Fig. 3(a).
Unlike the seed electrons that are slightly polarized due

to radiative polarization, the produced positrons (electrons)
are highly polarized ζ̄y ∼ 60%; see Fig. 2(i). Although the
polarization of both seed electrons and created pairs
benefits from the asymmetry of the two-color field con-
figuration, the asymmetry has a more significant impact on
the polarization of the pairs than on the seed electrons. This
is because seed electrons are polarized by radiative polari-
zation due to photon emissions, while the pair polarization

FIG. 2. (Top row) Angular distribution d2N=ðdθdϕÞ, with the
polar angle θ (rad), and the azimuthal angle ϕ (rad) (a) for seed
electrons e−0 , (b) for produced electrons e−, and (c) for positrons
eþ. (Middle row) The averaged spin distribution along the
magnetic field direction ζ̄y vs θ and ϕ (d) for e−0 , (e) for e−,
and (f) for eþ. (Bottom row) The particle number distribution
dN=dθ (solid blue lines), and the average spin component ζ̄y
(dashed-dotted red lines): (g) for e−0 , (h) for e

−, and (i) for eþ. In
(i), dN=dθ (green line) and ζ̄y (magenta line) are for eþ at the
production points [the beam average of ζ̄y are indicated on panels
(g)–(i); the beam average of ζ̄y at the production points is
ζ̄y0 ¼ 0.6]; ξ0 ¼ 83, ϵ0 ¼ 2 GeV.

FIG. 3. (a) Averaged spin ζ̄y vs laser cycle ψ : in a one-color
laser pulse, for seed electrons e−0 (solid green line) and positrons
eþ (dashed-dotted blue line); in a two-color laser pulse, e−0
(dotted pink line) and eþ (dashed red line). (b) Positron number
dN=dψ vs ψ for one- (solid blue line) and two-color (dashed red
line) laser pulses. (c) Photon number dNγ=dψ emitted by e−0
(solid blue line) at emission points and positron number dNþ=dψ
(dashed red line) at production points. (d) Ratio of electron
radiation probability with spin antiparallel to the magnetic field
direction (solid blue line), and ratio of pair production probability
with the positron spin parallel to magnetic field direction (dashed-
dotted red line); ξ0 ¼ 83, ϵ0 ¼ 2 GeV. The faint dotted line is the
two-color laser field.
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comes mainly from the creation process. There are two
reasons for spin asymmetry in the pair production process
in an asymmetric field. First, the spin related terms in the
probabilities play a more important role in the case of pair
production than in radiation, as shown in Fig. 3(d). It is
much more likely to have a positron along the magnetic
field during the pair production process (around 80%) than
due to photon emission (around 55%). Second, the prob-
ability of the pair production has a stronger dependence on
the laser intensity than the radiation probability. As shown
in Fig. 3(c), the pair production takes place mainly in the
dominant half-cycles of the two-color field and is fully
suppressed in the weak half-cycle, while photons are
emitted in both half-cycles with slightly different proba-
bilities. The latter is the main reason for highly polarized
positrons in a two-color field.
Since positrons are more likely to be produced along the

instantaneous laser magnetic field, in a one-color symmet-
ric laser field, the averaged polarization is negligible after
the interaction, as shown in Fig. 3(a). However, in the two-
color asymmetric field, a large polarization for the positron
beam is obtained because positrons are mostly produced at
By > 0 [see Figs. 3(b) and 3(c)], and the probability of
these positrons being polarized with ζy > 0 is very large
[see Fig. 3(d)]. Therefore, the positron density for ζy > 0 is
far higher than that for ζy < 0.
We underline the fact that the positron initial polarization

degree during the production process further decreases due
to photon emissions. This is because the radiative polari-
zation has less spin dependence than the pair production,
according to Fig. 3(d). Positrons produced with ζy > 0
have a chance to flip to ζy < 0 when emitting photons at
By < 0, which brings down the polarization. Fortunately,
the decrease of the polarization degree is not large, ranging
from ζ̄y ∼ 60% at the production point to the final
ζ̄y ∼ 58%, as is shown in Fig. 2(i).

We have investigated the optimal conditions for positron
polarization, and the results are summarized in Fig. 4.
First, we varied the ratio (R) of laser intensities. Figure 4(a)
shows that R ¼ 2 is the optimal choice of relative laser
intensities to obtain higher polarization. In fact, in this
case, the two-color field is most asymmetric when the
By < 0 parts of the field reach minimum strength.
Increasing laser intensity yields more pairs [see
Fig. 3(c)] but reduces the averaged polarization and
increases angular divergence [see Figs. 3(a) and 3(b)].
This is because higher laser intensity triggers more pair
production in negative parts of laser fields, bringing in
more positrons with ζy < 0. The similar scaling laws can
also be found for electrons’ initial energy; see Figs. 4(c)
and 4(d). More energetic electrons give rise to more pairs
and better emittance but compromise the polarization
degree. If high polarization has priority over positron
density, smaller laser intensity and initial electron energy
is preferable. If one aims for an intense eþ beam with a
moderate polarization degree, higher laser intensity and
more brightness of electrons are preferable.
The number of initial electrons in our simulation is 106,

which yields a final electron number in the bunch 106, and
104 positrons in the bunch, with 8% and 60% polarization
degree, respectively. The available laser wakefield accel-
eration technique can provide approximately 1010 electrons
in the GeV regime [69], which will allow for 108 polarized
positrons in the bunch with ζ ≈ 60% degree of polarization
(1010 electrons per bunch with ζ ≈ 8%). Moreover, since
the polarization is inversely proportional to the particles’
energy [54], the beam polarization can be increased with an
appropriate energy selection. For the positrons with an
energy smaller than 200 MeV, which account for 36% of
the total positrons, the polarization degree increases from
58% to 70%. The parameters of the laser-driven polarized
positron beam—namely, the polarization degree, the num-
ber of positrons in a bunch, the energy spread, and the
transverse emittance of the beam—are competitive with
those of the existing methods for polarized positrons [54]. It
raises the hope of permitting applications, in particular for
future colliders, when high repetition rates become acces-
sible for petawatt lasers [70,71].
In summary, we have put forward a novel concept of

two-color laser-based production of polarized positron
beams. It employs an unpolarized electron driver and
presently available ultrastrong lasers. The experiment
can be conducted by using an electron beam generated
by laser wakefield accelerated electrons head-on colliding
with a two-color laser pulse. In contrast to known radiative
polarization, the polarization of positrons during their
creation in the laser field is shown to be much more
sensitive to the field asymmetry and allows for a high
degree of polarization. The produced positrons may
advance the capacity of detection techniques in solid-state
and nuclear physics by providing additional spin

FIG. 4. (a),(d) The averaged polarization ζ̄y. (b),(e) FWHM of
θþ and (c),(f) the positron number Nþ. (Top row) R ¼ 1 (solid
blue lines), R ¼ 2 (dashed red lines), and R ¼ 3 (dotted-dashed
green lines) vs laser peak intensity ξ0 for ϵ0 ¼ 2 GeV. (Bottom
row) ξ0 ¼ 83 (solid blue lines), ξ0 ¼ 117 (dashed red lines), and
ξ0 ¼ 150 (dotted-dashed green lines) for R ¼ 2. The number of
initial electrons is N− ¼ 2 × 105.
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information, and they may encourage the realization of
polarized positron beams in a future linear collider.
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Note added.—Recently radiative polarization via two-color
fields was further extended in Refs. [72,73]. The systematic
studies provide optimized parameters with regard to maxi-
mal radiative polarization.
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