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The recently established agreement between experiment and theory for the g factors of lithiumlike
silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum
electrodynamics (QED) effects in the presence of a magnetic field. In this Letter, we present a significant
simultaneous improvement of both theoretical gth ¼ 2.000 889 894 4 ð34Þ and experimental gexp ¼
2.000 889 888 45 ð14Þ values of the g factor of lithiumlike silicon 28Si11þ. The theoretical precision
now is limited by the many-electron two-loop contributions of the bound-state QED. The experimental
value is accurate enough to test these contributions on a few percent level.
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Introduction.—The magnetic moment of elementary
particles and simple systems is a perfect tool for testing
fundamental theories. High-precision g-factor measure-
ments in highly charged ions [1–8] in combination with
elaborate theoretical investigations (see, e.g., Refs. [9,10]
for reviews) have provided the most stringent test of
bound-state QED in the presence of a magnetic field to
date. It keeps up with the accurate QED tests with binding
energies [11,12] and hyperfine splittings [13–15] in the
strong electromagnetic field of heavy nuclei; see also
Refs. [16–18] for reviews. Meanwhile, unprecedented
experimental and theoretical precision of the g factor of
middle-Z ions provides the probes of the nontrivial bound-
state QED effects which are only accessible otherwise in
heavy ions. Furthermore, bound-electron g-factor studies
resulted in the most accurate value of the electron mass
[19–22]. Recent measurements with two highly charged
lithiumlike calcium isotopes [6] have demonstrated the
possibility to access the relativistic nuclear recoil effect
[23–25]. This effect represents bound-state QED beyond
the Furry picture in the strong coupling regime, i.e., beyond
the external-field approximation where the nucleus is
treated merely as a source of the classical electromagnetic
field. While hydrogenlike ions, due to their simplicity,
allow for the most accurate theoretical predictions, nuclear
effects set the ultimate limits of the theoretical accuracy
regardless of the progress in QED calculations. However, in
combination with measurements on lithiumlike and boron-
like ions, these limits can be overcome [26,27].Here, specific
differences of the g-factor values of different charge states
with the same nucleus exhibit orders-of-magnitude smaller

theoretical uncertainties than the individual g factors
[26–30]. Based on this, an independent determination of
the fine structure constant from heavy hydrogen- and boron-
like ions [27] and from light hydrogenlike and lithiumlike
ions [29] has been proposed. Following the experiments
with hydrogenlike ions [1–4], the g factor of lithiumlike
silicon has beenmeasured atMainzUniversitywith a relative
uncertainty of 1.1 × 10−9 [5]. Shortly after, the g factors of
two lithiumlike calcium isotopes have been measured with
2 times smaller uncertainty [6]. The corresponding efforts
devoted to the evaluation of the many-electron contributions
to the g factor of three-electron ions have led to a relative
theoretical uncertainty of 3 × 10−9 for silicon [31] and
6 × 10−9 for calcium [32].
In this Letter, we present simultaneous experimental (by

a factor of 15) and theoretical (by a factor of 2) improve-
ments of the g factor of lithiumlike silicon. In view of the
determination of the fine structure constant [29] this
represents an important step towards this long-term goal.
The experimental progress is mainly due to the phase-
sensitive pulse and amplify (PnA) method used for deter-
mination of the ion’s cyclotron frequency. The theoretical
improvement is based on the reevaluation of the interelec-
tronic-interaction effects within the recursive formulation
of the perturbation theory. As a result, the theoretical
uncertainty is now dominated by the contributions of the
next-order many-electronQEDdiagrams. In order to achieve
further progress, these contributions need to be evaluated
rigorously (to all orders in αZ), while the remaining
theoretical background is sufficiently developed to match
the present experimental accuracy.
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Experiment.—The Zeeman splitting of the electron
energy levels in a homogeneous magnetic field B: ΔE ¼
hνL ¼ hgeB=ð4πmeÞ gives experimental access to the
bound-electron g factor. Here, h denotes the Planck con-
stant, νL the Larmor frequency, e the electric charge of the
electron, and me its mass. By measuring the cyclotron
frequency of the highly charged ion νc ¼ qionB=ð2πmionÞ,
where qion is the electric charge and mion is the mass of the
ion, the magnetic field can be determined and the g factor is
then given by the ratios of frequencies (Γ≡ νL=νc), masses
(me=mion), and charges (qion=e):

g ¼ 2Γ
me

mion

qion
e

: ð1Þ

In the case of lithiumlike silicon, the mass of the ion
mð28Si11þÞ ¼ 27.970 894 575 55ð75Þ u [20,33,34] and the
mass of the electron me ¼ 0.000 548 579 909 070ð16Þ u
[19,20,35] contribute to the relative systematic uncertainty
of the experimentally determined g factor on a level of
δg=gjmion;me

¼ 4 × 10−11, whereas the previously measured
frequency ratio Γ entails a relative uncertainty of δg=gjΓ ¼
1 × 10−9 [5]. In the following, a 15-fold improved value of
Γ is presented.
For the determination of the Larmor-to-cyclotron fre-

quency ratio Γ, the experimental apparatus for bound-
electron g factors of highly charged ions, located in Mainz,
has been used [35]. Here, a single 28Si11þ ion is studied
inside a stack of cylindrical Penning traps of 3.5 mm radius.
This stack is placed into a hermetically sealed vacuum
vessel permeated by a homogeneous 3.8 T magnetic field
and cooled to the temperature of liquid helium. The
cryogenic temperature enables reaching an extraordinarily
good vacuum in excess of 10−17 mbar, such that the highly
charged ions can be stored for periods in excess of several
weeks. Generally, most electrodes in the stack are kept at
ground potential. By applying a voltage of about −7.2 V to
the so-called ring electrode of the “precision trap” (PT), the
ion is confined in the direction parallel to the magnetic field
lines. Additionally, a set of correction electrodes allows
improving the harmonicity of the resulting electrostatic
potential significantly. In the combined electrostatic and
magnetic field the ion undergoes a motion that can be
decomposed into the three independent harmonic oscilla-
tions, the axial motion along the magnetic field lines in the
axial direction with the frequency νz ¼ 631 kHz and the
two modes in the radial direction, the (modified) cyclotron
mode at νþ ¼ 22.7 MHz and the magnetron motion with
ν− ¼ 8.8 kHz. The axial motion can be detected via the
image currents that the ion induces onto the trap electrodes.
A superconducting resonant “tank” circuit with high
effective resistance at resonance converts the induced
femto-ampere current into measurable nanovoltages and,
moreover, cools the ion’s axial motion to 4K. In thermal
equilibrium the ion effectively shorts the tank circuit at its

axial frequency and consequently can be seen as a mini-
mum (“dip”) in the thermal noise spectrum. The radial
motions do not couple directly to the tank circuit, but can be
coupled to the axial motion via suitable radiofrequency
excitations at the respective sum or difference frequencies
[36,37]. For the most important modified cyclotron mode
we use the phase-sensitive PnA method, which allows a
Ramsey-type detection at low motional amplitudes and
correspondingly small systematic shifts [38]. With all
eigenfrequencies measured, the free cyclotron frequency
can be reconstructed even in the presence of field imper-
fections using the Brown-Gabrielse invariance relation
νc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2þ þ ν2z þ ν2−
p

[39]. The second ingredient for the
sought-after ratio Γ, the Larmor precession frequency
νL ¼ 105 GHz, is determined by performing millimeter-
wave spectroscopy on the transition between the Zeeman
sublevels. To this end, we detect the magnetic sublevel, or
spin state, using the continuous Stern-Gerlach effect
(CSGE) [40] in a second, dedicated so-called “analysis
trap” (AT). Here, a ferromagnetic ring electrode creates a
strong magnetic inhomogeneity of the form Bz ¼ B0 þ
B2z2 þ � � � with B2 ¼ 10.5 kT=m2. In this field, the ion
experiences an additional axial force which depends on the
magnetic moment projection and consequently slightly
alters the axial frequency. In the case of the 28Si11þ ion
discussed here, a spin-flip causes a clearly detectable axial
frequency jump of about 260 mHz. To avoid adverse effects
of the magnetic bottle on the precision of the measurement,
we perform the precision spectroscopy of Γ in the spatially
separated PT. Here, the cyclotron frequency is measured,
which takes about 5 sec, and simultaneously a millimeter
wave at a random probe frequency νmw is injected.
Afterwards, we transport the ion into the AT, where we
detect the spin state via the CSGE. The result is compared
to the one of the previous cycle to determine whether the
millimeter wave in the PT has effectively flipped the spin
state. This way, we can map the spin-flip probability as a
function of the ratio of the measured cyclotron frequency
and the chosen millimeter-wave frequency Γ� ¼ νmw=νc
and apply a maximum likelihood fit to the data set with a
Gaussian distribution. From this we extract the center Γstat,
which we subsequently correct for systematic shifts.
Further details on the measurement cycle can be found,
e.g., in Ref. [35]. Compared to the previous campaign [5],
we have increased the precision per cycle by about an order
of magnitude by using the phase-sensitive PnA method
rather than the noise dips for the modified frequency
detection. Furthermore, the time required in the AT for
spin-flip detection has been reduced significantly by
increasing the available millimeter-wave power and by
improving the centering of the ion in the AT. If the ion is
shifted from the center of the bottle, e.g., by stray electric
fields arising from imperfections on the electrode surfaces
or by geometric misalignment of the trap electrodes, the
Larmor precession becomes strongly modulated by the
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axial motion, as can be seen from the expansion of the
magnetic bottle field around an offset δz: BðtÞ ¼ B0 þ
2B2δzzðtÞ þ � � �. Consequently, a series of axial sidebands
appears and significantly reduces the effectively available
millimeter-wave power. This effect can be counteracted by
applying suitable correction voltages which shift the ion
back into the (axial) center of the bottle.
In 1.5 months, 1674measurement cycles (263 cycles with

and 1411 cycles without a spin-flip in the PT) have been
recorded at four different modified cyclotron excitation radii
rþ;exc ¼ 11; 17; 52; 69 μm, see Fig. 1. Here, the slope is
mainly given by the relativistic shift of the modified cyclo-
tron energy. The linearly extrapolated frequency ratio at zero
excitation energy Γstatðrþ;exc ¼ 0Þ ¼ 4637.318 949 16ð21Þ
has to be corrected for systematic shifts, see Table I, which
are also discussed in Ref. [35]:

Γfinalð28Si11þÞ ¼ 4637.318 946 10 ð27Þ: ð2Þ

The additional electric field, which is generated by the
induced image charges on the trap surfaces, causes small
shifts in the two radial frequencies [4]. This so-called image
charge shift is the dominant systematic effect [41].
In combination with the masses given above we determine
an improved value of the bound-electron g factor of lithium-
like silicon:

gexpð28Si11þÞ ¼ 2.000 889 888 450 ð92Þ ð68Þ ð53Þ ð58Þ: ð3Þ

Here, the statistical and systematic uncertainty ofΓ aswell as
the uncertainties due to the mass of 28Si11þ and the mass of
the electron are given in the four brackets separately.Our new
value is in excellent agreement with the formermeasurement
and exceeds its precision by a factor of 15. With a relative
uncertainty of 7.0 × 10−11, this new value also surpasses by a
factor of 6 the precision of the currently most accurate
lithiumlike g factor [δgexpð48Ca17þÞ=g ¼ 4.1 × 10−10 [6] ]
which is limited by the uncertainty of the calcium ion mass.
Theory.—While for one-electron systems the theoretical

consideration of the g factor comes down to the QED and
nuclear effects, for lithiumlike ions the electron-electron
interaction effects come into play. In contrast to other
atomic properties, such as binding energies, for the g factor
these effects are purely relativistic; i.e., they vanish in the
nonrelativistic limit. Moreover, the contribution of the
negative-energy states is not suppressed as compared to
the positive-energy states and is equally important. These
features make the g-factor evaluation in many-electron
systems more involved than, e.g., the evaluation of the
binding energies. Various calculation methods have been
employed over the years, which resulted in today’s accu-
racy on the level of 10−9. In general, there are three
expansion parameters that can be used in the theoretical
description of highly charged ions: α, αZ, and 1=Z, where α
is the fine structure constant and Z is the nuclear charge
number. Different theoretical approaches rely on the
expansions in αZ, 1=Z, or both. The rigorous QED
approach accounts for all orders in αZ, while only few
leading orders in α and 1=Z are accessible to date. In
particular, the diagrams of the one- and two-photon
exchange (∼1=Z and ∼1=Z2) and the two-electron self-
energy and vacuum-polarization diagrams (∼α=Z) have
been evaluated to all orders in αZ [5,32,42,43]. In turn, the
so-called NRQED (nonrelativistic quantum electrodynam-
ics) approach provides access to all orders in 1=Z (based
on the Schrödinger equation); however, it is restricted to
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FIG. 1. Measured frequency ratios Γstat at different modified
cyclotron excitation energies during the PnA cycle minus some
offset parameter Γoff. At a fixed pulse length, the excited modified
cyclotron radius rþ;exc scales linearly with the amplitude Uexc of
the first PnA pulse measured in voltage peak to peak (Vpp). Since
the dominant relativistic shift depends quadratically on the radius,
data are plotted versus r2þ;exc. The red line indicates a linear fit
extrapolating to zero excitation energy. The extrapolated value
(red dot with error bar) is in excellent agreement with the former
measurement (blue dot with error bar) [5]. The gray hatched area
indicates the uncertainty of the linear fit.

TABLE I. Relative systematic shifts of the frequency ratio Γ
and their uncertainties, defined as ðΓfinal − ΓstatÞ=Γoff .

Effect
Rel. shift
(×1012)

Rel. uncert.
(×1012)

Image charge −659 33
Line shape model 0 7
Residual electrostatic
anharmonicity

≪1 2

Magnetron frequency
uncertainty

0 2

Image current −1 1
Residual magnetostatic
inhomogeneity

0.5 0.4

Residual special relativity −0.2 0.3

Total −660 34
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the leading orders in αZ (see, e.g., Refs. [31,44]). The
interelectronic-interaction operator incorporating the lead-
ing relativistic corrections is known as the Coulomb-Breit
operator. For this reason, the term “Breit approximation” is
widely used for the results obtained with this operator and
more generally for the results, which reproduce correctly
the contributions to the g factor of the order ðαZÞ2. The
higher-order remainder (starting from ðαZÞ4) can be termed
as a “nontrivial QED contribution.” However, this separa-
tion depends on the exact formulation of the approach used
to obtain the Breit approximation.
The interelectronic-interaction effects determine the accu-

racy of the recently published theoretical g-factor values
[31,32] in the middle-Z region. For this reason, below we
consider these effects in some detail. According to the
previousworks, we separate themany-electron contributions
into the pure interelectronic-interaction correction, the
screening of the QED effects, and the corresponding cor-
rection to the nuclear recoil effect. The effect of the finite
nuclear size can be taken into account for each of these
contributions by using the Coulomb potential of the finite
nucleus.
First, we consider the interelectronic-interaction correc-

tion to the g factor of lithiumlike ions within the Breit
approximation. Accurate calculations to all orders in 1=Z
have been performed by Yan [45,46] based on the effective
two-component Hamiltonian derived by Hegstrom [47].
Recently, Yerokhin and co-authors have performed similar
calculations with much better accuracy [31]. In this work,
we present an independent calculation within the recursive
formulation of the perturbation theory [48]. This method
proved to be efficient for calculations of the higher-order
interelectronic-interaction contributions to the binding
energies in few-electron ions [48–50]. Presently, the method
is further developed to the g-factor calculations. This implies,
in particular, proper accounting for the contribution of the
negative-energy continuum which is a tricky problem, often
solved incorrectly within the established methods, see, e.g.,
discussion in Refs. [51,52]. Application to the nuclear-recoil
effect on the g factor has been demonstrated already in
Refs. [23,25]. The key advantage of this method is that it
provides direct access to the individual terms of the 1=Z
expansion. Consequently, no fitting procedure is needed to
identify the part of the order 1=Z3 and higher, which is to be
combined with the QED values for the 1=Z and 1=Z2 terms.
The convergence of the 1=Z expansion can be improved
significantly by using the effective screening potential in the
Dirac equation, which defines the zeroth-order wave func-
tions. We consider three different screening potentials—
core-Hartree, Kohn-Sham, and local Dirac-Fock [49,53–56].
As a result, we find the Breit-approximation part of the
interelectronic interaction with an uncertainty on the level
of 1 × 10−9. It has to be complemented by the nontrivial
QED contribution (higher orders in αZ) evaluated with the
same screening potential.

Evaluation of the interelectronic interaction to all orders
in αZ within the framework of bound-state QED can be
done only order by order in 1=Z. The first-order correction
(one-photon exchange) is relatively simple, it has been
calculated, e.g., in Ref. [26] for a wide range of Z. The two-
photon-exchange correction is significantly more involved,
including the derivation of the complete set of formulas and
development of the numerical procedure. The first evalu-
ation for lithiumlike silicon with the Coulomb potential in
Ref. [5] was extended to several other lithiumlike ions and
to various screening potentials in Ref. [32]. In this paper,
we reevaluate the one- and two-photon-exchange contri-
butions for silicon with the potentials listed above to match
the Breit-approximation values. The total interelectronic-
interaction contribution to the g factor of lithiumlike silicon
is 314.8118 ð12Þ ð24Þ × 10−6. The first error bar here is the
numerical uncertainty of the calculations. The second one
is due to the unknown nontrivial QED contribution of the
three-photon-exchange diagrams. It can be estimated based
on different ratios of the presently known contributions.
As an approximate average of these estimations, we use the
expression 2ðαZÞ2Δgð3Þ, where Δgð3Þ is the 1=Z3 contri-
bution evaluated in the Breit approximation. This estima-
tion is more conservative than the one used in Ref. [31].
The interplay between the interelectronic interaction

and QED effects leads to the two-electron or “screened”
QED correction. In analogy to the “pure” interelectronic-
interaction contribution considered above, one can also
consider the Breit approximation here. To this end, one can
use the set of two-component effective QED operators [47].
For s states these operators yield the correct result up to
the order ðαZÞ2 for arbitrary order in α and 1=Z. In
Refs. [31,45,46] these operators were used to evaluate
the screened QED correction by averaging with the many-
electron wave functions obtained from the many-electron
Schrödinger equation. In Ref. [51] the four-component
counterparts of these operators were used to calculate
the 1=Z contribution. In this work, we incorporate these
operators in the recursive perturbation theory in order to
find the contributions of arbitrary order in 1=Z. In order to
obtain the sought-for contributions we develop the multi-
recursive scheme of the perturbation theory with respect
to the following operators: the effective four-component
QED operators (first order), the magnetic-field interaction
(first order), and the interelectronic interaction (arbitrary
order). In addition, we employ the effective screening
potential (see above), which accelerates the convergence
of the perturbation series in 1=Z.
Screened QED correction of the first orders in α and in

1=Z corresponds to the set of two-electron self-energy and
vacuum-polarization diagrams, which have been evaluated
to all orders in αZ in Refs. [32,42,43]. The numerical
uncertainty of these calculations gets larger for smaller
nuclear charge due to the large cancellations of individual
terms and the poor partial-wave convergence. In this work,
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in order to get the most of both the rigorous approach and
the effective operators, we have performed the calculations
within both methods for a set of Z in the range 20–50. Then
the difference between these values has been extrapolated
to Z ¼ 14 by fitting to the polynomials in 1=Z and αZ.
As a result, we find −0.2415 ð14Þ ð16Þ × 10−6 for the
screened QED correction to the g factor of lithiumlike
silicon. The first given uncertainty is numerical and the
second one is due to the unknown nontrivial QED con-
tribution of the second and higher orders in 1=Z. It is
estimated using the ratio of the nontrivial QED contribution
and the Breit-approximation part of the 1=Z contribution, in
full agreement with Ref. [31].
The theoretical results for the g factor of lithiumlike

silicon are summarized in Table II. The finite nuclear size
effect is calculated numerically, the uncertainties due to
the nuclear radius and model are negligible at present.
The interelectronic-interaction and the screened QED
contributions are evaluated in the present work as described
above. The one-loop one-electron QED correction is taken
from Refs. [51,57,58]. The QED correction of the second
and higher orders in α obtained within the framework of
αZ expansion is taken from Refs. [22,31,59,60]. For the
nuclear recoil effect we use the most recent results from
Refs. [23,25], which include the higher-order terms in αZ
and the interelectronic-interaction contributions. The total
theoretical value of the g factor is

gthð28Si11þÞ ¼ 2.000 889 894 4 ð34Þ: ð4Þ

The error bar is largely determined by the estimation of
the presently unknown contributions of the two-loop many-
electron diagrams: three-photon exchange and two-photon
exchange with additional self-energy loop. The difference

between gth and gexp is 1.7 times larger than this uncertainty,
which strongly stimulates further theoretical investigations.
Conclusion.—In summary, we have presented a 15-fold

improvement of the experimental value and a twofold
improvement of the theoretical value of the g factor of
28Si11þ. The experimental and theoretical relative uncer-
tainties amount to 7.0 × 10−11 and 1.7 × 10−9, respectively.
The latter is mostly determined by the unknown many-
electron two-loop QED contributions. The obtained values
are 1.7σ apart, which may indicate that these contributions
exceed our present estimations. Further laborious develop-
ments of the theoretical methods are required to resolve this
discrepancy. At the same time, the obtained experimental
value has a potential to validate the nontrivial parts of
the many-electron two-loop QED contributions on a few
percent level as soon as they are calculated.
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