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An analytic expression is derived for the leading-order finite-volume effects arising in lattice QCD
calculations of the hadronic-vacuum-polarization contribution to the muon’s magnetic moment

aHVP;LOμ ≡ ðg − 2ÞHVP;LOμ =2. For calculations in a finite spatial volume with periodicity L, aHVP;LOμ ðLÞ
admits a transseries expansion with exponentially suppressed L scaling. Using a Hamiltonian approach, we
show that the leading finite-volume correction scales as exp½−MπL� with a prefactor given by the (infinite-
volume) Compton amplitude of the pion, integrated with the muon-mass-dependent kernel. To give a
complete quantitative expression, we decompose the Compton amplitude into the spacelike pion form
factor FπðQ2Þ and a multiparticle piece. We determine the latter through next-to leading order in chiral
perturbation theory and find that it contributes negligibly and through a universal term that depends only on
the pion decay constant, with all additional low-energy constants dropping out of the integral.
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Introduction.—The discrepancy between experimental
[1,2] and theoretical [3–5] values and the ongoing mea-
surements at Fermilab [6–9] and J-PARC [10,11] have
motivated various lattice QCD (LQCD) collaborations to
calculate the hadronic contributions to ðg − 2Þμ, which
currently dominate the theoretical uncertainty [12–28]. The
relevant contributions divide into hadronic light-by-light,
leading-order hadronic vacuum polarization (LO HVP) and
electromagnetic as well as strong-isospin corrections to the
HVP. As the dominant hadronic contribution, the LO HVP
must be determined with subpercent uncertainties to reach a
total theory uncertainty competitive with the expected
experimental precision [29]. Depending on the central
values of the theoretical and experimental updates, the
improved precision on both sides will provide powerful
constraints on, or else strong evidence for, new physics
beyond the standard model.
As the only known, systematically improvable approach

to nonperturbative QCD, numerical lattice QCD is a natural
tool in the determination of the LO HVPwhere a systematic
and precise value is of great importance. The most common
approach is to estimate aHVP;LOμ ≡ ðg − 2ÞHVP;LOμ =2 via the
integral [30]

aHVP;LOμ ðT; LÞ ¼ 2α2

m2
μ

Z
T=2

0

dx0K̂ðmμx0ÞGT;Lðx0Þ; ð1Þ

where α ≈ 1=137 is the fine-structure constant, mμ the
muon mass, and

GT;Lðx0Þ≡ −
1

3

X3
k¼1

Z
L3

d3xhjkðx0; xÞjkð0ÞiT;L; ð2Þ

K̂ðtÞ≡ t2 − 2πtþ ð8γE − 2Þ þ 4

t2
þ 8 logðtÞ

−
8K1ð2tÞ

t
− 8

Z
∞

0

dv
e−t

ffiffiffiffiffiffiffiffi
v2þ4

p

ðv2 þ 4Þ3=2 : ð3Þ

Here jμðxÞ ¼
P

f qfψ̄fðxÞγμψfðxÞ is the Euclidean-signa-
ture vector current and K1ðzÞ a Bessel function. We have
used notation to emphasize that the calculation is per-
formed in a finite-volume T × L3 Euclidean spacetime with
periodic geometry.
In Eq. (1) the finite temporal extent is accommodated by

cutting the integral at T=2. We leave a detailed analysis of
finite-T effects, arising both from the boundary conditions
and the treatment of large x0 in the integral, to a future
work. In this work we consider only the finite-L effects,
defining aHVP;LOμ ðLÞ≡limT→∞a

HVP;LO
μ ðT;LÞ. We will show

that this quantity has only exponentially suppressed finite-
volume effects, and the suppression is controlled by the
pion mass Mπ .
Evenwhen T is takenvery large, the large-x0 region of the

integral in Eq. (1) cannot be calculated from the measured
two-point function because of the well-known exponential
degradation of the signal-to-noise ratio. In practice, one
can calculate the two-point function GT→∞;Lðx0Þ for
x0 < τc from numerical simulations (possibly with a mild
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extrapolation to saturate the T → ∞ limit), and then use
additional inputs to reconstruct the x0 > τc region. This
yields a decomposition

areconμ ðLÞ ¼ aμðLjx0 < τcÞ þ areconμ ðLjx0 > τcÞ; ð4Þ

where the superscript recon stands for reconstructed. The
first term is calculated by restricting the integration domain
in Eq. (1) to 0 < x0 < τc and by using the measured two-
point function. The second term is obtained from an
analogous formula where the integral is taken over τc <
x0 < ∞ and the reconstructed two-point function is used.
We will see that aμðLjx0 < τcÞ approaches the infinite-

volume limit exponentially fast. On the other hand,
areconμ ðLjx0 > τcÞ may approach L → ∞ more slowly,
depending on the exact prescription used. As an extreme
example, if one estimates G∞;Lðx0Þ for x0 > τc by sum-
ming over a fixed number of finite-volume states, the
resulting contribution to the HVP will have power-law L
dependence [31,32]. In practice, more sophisticated pro-
cedures are employed and the resulting scaling must be
considered on a case-by-case basis. [As explained in
Ref. [30], one can use the Lellouch-Lüscher formalism
[31–33], or else some model [20], to extract the timelike
pion form factor in infinite volume, and use this as an input
in the spectral representation to calculate the contribution of
states below the four-pion threshold to aμðLjx0 > τcÞ,
directly in infinite volume. In this case one trades the
finite-volume effects for other systematics that depend on
the particular chosen procedure.]
Our main result, the formula for the leading exp½−MπL�

finite-volume effect to aHVP;LOμ ðLÞ, is presented in the next
section, and is derived in the “Derivation” section by means
of a Hamiltonian formalism in which quantization along a
spatial direction is used to pick out the complete functional
form nonperturbatively. In the “Implications” section we
discuss the implications of our expression for ongoing

calculations. We find that the dominant contribution enters
through the spacelike pion form factor, and, since the latter
is readily calculated on the lattice, this provides a viable
method for correcting the leading L dependence. We
estimate also the dominant contribution to the finite-
volume effects of aμðLjx0 < τcÞ, which can be useful
information when devising a strategy along the lines
of Eq. (4).
Our results differ from Refs. [34,35] in that these work to

a fixed order in chiral perturbation theory (ChPT) whereas
our result is the full nonperturbative expression, to leading
order in the large L expansion. In this regard it is worth
emphasizing that the strict chiral expansion is limited
by the fact that, at next-to-next-to-next-to leading order,
the momentum-space vector correlator receives a Q6

contribution that leads to a divergence in the integral
defining aHVP;LOμ .
Result.—We define

ΔaμðLÞ≡ aHVP;LOμ ðLÞ − lim
L→∞

aHVP;LOμ ðLÞ; ð5Þ

where, as in the Introduction, we ignore the effects of
the finite temporal extent. These scale as e−MπT and

e−Mπ

ffiffiffiffiffiffiffiffiffiffi
T2þL2

p
. Therefore, in the commonly used setup

T ¼ 2L, the finite-T corrections are subleading and should
be dropped. The separation is plausible from the perspec-
tive of a generic effective field theory. Volume effects can
be encoded via position-space propagators, summed over
all periodic images. The propagator’s form then leads to
exponential decay falling according to the image distance
multiplied with the pion mass. The detailed proof of this
separation, based on the methods of Ref. [36], is given in a
second longer publication.
In the next section we show that the leading finite-L

corrections are given by

ΔaμðLÞ ¼ −
2α2

m2
μ

Z
dp3

2π

e−L
ffiffiffiffiffiffiffiffiffiffiffi
M2

πþp2
3

p

4πL

Z
∞

0

dx0K̂ðmμx0Þ
Z

dk3
2π

cosðx0k3Þ
X

q¼0;�1

ReTqð−k23;−k3p3Þ þOðe−
ffiffi
2

p
MπLÞ; ð6Þ

where Tq is the Compton amplitude,

Tqðk2; k · pÞ≡ i lim
p0→p

Z
d4xeikxhp0; qjTJ ρðxÞJ ρð0Þjp; qi∞; ð7Þ

in the forward limit. Here, jp; qi is the relativistically
normalized state of a single pion with momentum p and
charge q, and k2 ¼ k20 − k2 and k · p ¼ k0p0 − kp are the
Minkowski squared norm and scalar product. Following the
discussion after Eq. (5), the subleading exponential, e−

ffiffi
2

p
MπL,

arises froman imagedisplaced in twoof the spatial directions.

J μðxÞ is the Minkowski current. In the Schrödinger
picture this is related to its Euclidean counterpart via

J 0ðxÞ ¼ j0ðxÞ; J kðxÞ ¼ −ijkðxÞ; ð8Þ

and the corresponding Heisenberg operators are
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jμðx0; xÞ ¼ ex0HjμðxÞe−x0H; ð9Þ
J μðt; xÞ ¼ eitHJ μðxÞe−itH: ð10Þ

Derivation.—Define GLρ
ðx0Þ exactly as GT;Lðx0Þ in

Eq. (2) but in a volume in which all four directions may
differ, i.e., with L0 × L1 × L2 × L3. Then introduce
ΔG3ðx0jLÞ≡ ½1 − limL0;1;2→∞�GLρ

ðx0Þ as the finite-volume
residue due to compactification in the 3 direction only.
To determine ΔG3ðx0jLÞ, we study GLρ

ðx0Þ with geom-
etry Lρ ¼ ðL⊥; L⊥; L⊥; LÞ and quantize along the 3 direc-
tion. Defining x ¼ ðx1; x2; x0Þ ¼ ðx⊥; x0Þ, the Hamiltonian
representation of the Euclidean two-point function yields

GLρ
ðx0Þ ¼ −

1

3

Z
L⊥

0

d2x⊥
Z

L

0

dx3

×
tr½e−ðL−x3ÞHjμðxÞe−x3Hjμð0Þ�

tre−LH
; ð11Þ

where the Hamiltonian has a discrete finite-volume spec-
trum of states in L3⊥ and the trace is taken over this Hilbert
space. Here we are using L⊥ to ensure that intermediate
expressions are well defined. This will be sent to infinity at
the end of the calculation. For simplicity, in this formula we
have assumed periodic boundary conditions for gluons and
antiperiodic boundary conditions for fermions in the 3
direction. To account for the commonly used periodic
boundary conditions for fermions one should introduce
ð−1ÞF in all traces, where F is the fermion number. This
does not change the leading exponential contribution, since
this is due to single-pion, hence bosonic, states.

Let jni be a basis of simultaneous eigenstates of the
Hamiltonian (eigenvalue En), the momentum (eigenvalue
pn), the charge (eigenvalue qn) operators. Inserting a
complete set of such states in both the numerator and
the denominator then gives

GLρ
ðx0Þ ¼ −

1

3

X
n;n0

e−LEnP
n00e

−LEn00

Z
L⊥

0

d2x⊥
Z

L

0

dx3

× e−x3ðEn0−EnÞhnjjμðxÞjn0ihn0jjμð0Þjni: ð12Þ
The role of the coordinates x0 and x3 in this analysis is

potentially confusing. In our final results x0 plays the role
of the time coordinate. This is the coordinate of integration
in Eq. (1), typically parametrizing the longest Euclidean
direction. Here, to identify the leading L dependence, it is
convenient to quantize along the 3 direction. One must only
take care that, in any given expression, all energies and all
states are consistently defined with respect to the same
quantization direction.
Returning to Eq. (12), the integral over x3 can be

calculated explicitly. To avoid the need of separating
En0 ¼ En terms from the rest, we introduce the following
identity, which holds for all values of En, En0 :

e−LEn

Z
L

0

dx3e−x3ðEn0−EnÞ ¼ lim
ϵ→0þ

Re
e−LðEnþiϵÞ−e−LðEn0−iϵÞ

En0 −En−2iϵ
:

ð13Þ

Substituting into Eq. (12) and exchanging n0 ↔ n in certain
terms, we obtain

GLρ
ðx0Þ ¼ −

1

3
lim
ϵ→0þ

X
n

e−LEnP
n00e

−LEn00

Z
L⊥

0

d2x⊥
�
RehnjjμðxÞ

e−iLϵ

H − En − 2iϵ
jμð0Þjni þ ðϵ → −ϵÞ

�
: ð14Þ

This expectation value can be expressed in terms of the (finite-volume) Minkowskian two-point function via

RehnjjμðxÞ
e−iLϵ

H − En − 2iϵ
jμð0Þjni þ ðϵ → −ϵÞ ¼ Reie−iLϵ

Z
∞

−∞
dte−2ϵjtjhnjTJ μðt; xÞJ μð0Þjni; ð15Þ

which is valid for ϵ > 0 and can be easily proven using
Eq. (10) and integrating over t explicitly. We stress that this
is a mathematical identity and the parameter t has no
relation to any of the spacetime coordinates in the system.
The expansion aboutL → ∞ is now straightforward as the

exponentials are manifest and one can identify the relevant
contribution. Neglecting terms of order e−2MπL, we reach

ΔG3ðx0jLÞ¼−
1

3
lim
ϵ→0þ

X
Mπ≤En<2Mπ

e−LEn

Z
L⊥

0

d2x⊥

×Reie−iLϵ
Z

∞

−∞
dte−2ϵjtjhnjTJ μðt;xÞJ μð0Þjnic;

ð16Þ

where the connected expectation value is defined as
hnjOjnic≡hnjOjni−h0jOj0i with O representing the
time-ordered product. At this point we can take the
L⊥ → ∞ limit. This is done by replacing the sum over
the states in the one-particle region with the phase-space
integral

X
Mπ≤En<2Mπ

e−LEn jnihnj ⟶
L⊥→∞

X
q¼0;�1

Z
EðpÞ<2Mπ

d3p
ð2πÞ3

e−LEðpÞ

2EðpÞ jp; qihp; qj; ð17Þ

and by replacing the connected expectation value with the
forward limit
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ihnjTJ μðt; xÞJ μð0Þjnic →Z
d4k
ð2πÞ4 e

−iðk0t−k⊥x⊥−k3x0ÞTqðk2; k · pÞ; ð18Þ

where the definition Eq. (7) has been used. In the L⊥ → ∞
limit, the integrals over t and x⊥ are readily calculated,
yielding delta functions in k0 ¼ k⊥ ¼ 0, i.e.,

ΔG3ðx0jLÞ ¼ −
1

3

X
q¼0;�1

Z
EðpÞ<2Mπ

d3p
ð2πÞ3

e−LEðpÞ

2EðpÞ

× Re
Z

dk3
2π

eik3x0Tqð−k23;−k3p3Þ: ð19Þ

In the final expression note that any contribution to the
integrand that is odd in k3, p3 → −k3;−p3 must integrate to
zero, which justifies the replacement eik3x0 → cosðk3x0Þ.
To complete the derivation we note that the restriction
EðpÞ < 2Mπ can be dropped, as this amounts to an error
of the same order as terms that we are neglecting. Finally, the
integral over p⊥ can be explicitly calculated. We reach

ΔG3ðx0jLÞ ¼ −
1

3

X
q¼0;�1

Z
dp3

2π

e−L
ffiffiffiffiffiffiffiffiffiffiffi
M2

πþp2
3

p

4πL

×
Z

dk3
2π

cosðk3x0ÞReTqð−k23;−k3p3Þ: ð20Þ

Multiplying the result by 3 to account for the three directions
with compactificationL, we conclude Eq. (6). (This last step
assumes a decomposition similar to that allowing us to
neglect finite T and is demonstrated in detail in a subsequent
publication.)
We close by commenting on different choices of boun-

dary conditions. If fermions satisfy eiθ-periodic boundary

conditions [37,38], i.e., ψfðxþ Lρρ̂Þ ¼ eiθ
f
ρψfðxÞ, Eq. (11)

should be modified by inserting ð−1ÞFei
P

f
θf
3
Nf in all

traces, where Nf is the number operator for the flavor f. In
this case, Eq. (6) is modified by replacing

3
X

q¼0;�1

ReTq→
X3
k¼1

f2cosðθuk−θdkÞReT�1þReT0g; ð21Þ

where we have used Tþ1 ¼ T−1 ≡ T�1 as follows from
charge-conjugation invariance.
Implications.—Having derived the leading-order func-

tional form of ΔaμðLÞ, we close by considering the
implications for ongoing numerical LQCD calculations.
Here we mainly focus on periodic boundary conditions but
comment again on the role of twisting below. For conven-
ience, we define the charge-summed Compton amplitude,
T ≡P

q Tq.

We begin by rewriting Eq. (6) as (we drop terms of order
e−

ffiffi
2

p
MπL throughout this section)

ΔaμðLÞ ¼ −
2α2mμ

πL

Z
∞

0

dk3ĝðk3=mμÞT 00ðk23jLÞ; ð22Þ

where we have introduced

T ðk23jLÞ≡
Z

∞

−∞

dp3

2π
e−L

ffiffiffiffiffiffiffiffiffiffiffi
M2

πþp2
3

p
ReTð−k23;−p3k3Þ; ð23Þ

ĝðωÞ≡ω

Z
∞

ω2

dy
Z

∞

y

dx

x3=2
16ffiffiffiffiffiffiffiffiffiffi

xþ4
p ð ffiffiffiffiffiffiffiffiffiffi

xþ4
p þ ffiffiffi

x
p Þ4 ; ð24Þ

and T 00 is the second derivative of T with respect to k23.
We next decompose the Compton amplitude into its pole

and analytical contributions,

Tðk2;k ·pÞ≡Tregðk2;k ·pÞ

þ
�
2ð4M2

π−k2ÞF2
πð−k2Þ

−k2−2p ·k− iϵ
þðp→−pÞ

�
; ð25Þ

where Fπ is the spacelike pion form factor and the
separation defines Treg. This implies

T ðk23jLÞ¼2ð4M2
πþk23ÞF2

πðk23Þζðk23jLÞþT regðk23jLÞ; ð26Þ

where we have introduced

ζðk23jLÞ≡ 2Re
Z

∞

−∞

dp3

2π

e−L
ffiffiffiffiffiffiffiffiffiffiffi
M2

πþp2
3

p

k23 þ 2p3k3 − iϵ
; ð27Þ

which can be readily reduced to forms well suited to
numerical evaluation. The second term in Eq. (26) is given
by Eq. (23) with T → Treg. [Tregð−k23;−p3k3Þ is an analytic
function in the complex strip defined by Imk3 < Mπ=2. In
addition, for real k3, both Tregð−k23;−p3k3Þ and Fπðk23Þ are
real functions.]
In Table I we numerically estimate the contribution of the

FπðQ2Þ-dependent term to ΔaμðLÞ, using two functional
forms for the specelike form factor. We have confirmed that
the FπðQ2Þ ¼ 1 values match the prediction from ChPT.
The monopole form, taken from Ref. [39], is known to

TABLE I. Contribution to ΔaμðLÞ from the FπðQ2Þ term for
functional forms as indicated. Here we take mμ=Mπ ¼ 106=137
and M=Mπ ¼ 727=137. As a reference value, we take
aHVP;LOμ ¼ 700 × 10−10.

½ΔaμðLÞ=aHVP;LOμ � × −102

MπL FπðQ2Þ ¼ 1 FπðQ2Þ¼½1=ð1þQ2=M2Þ� Treg

4.0 0.639 1.26 0.019
5.0 0.579 0.852 0.005
6.0 0.348 0.461 0.001
7.0 0.180 0.226 j � � � j < 10−3

8.0 0.0863 0.104 j � � � j < 10−3
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describe both experimental and lattice data very well up
to Q2 ¼ 2.45 GeV2.
We have also calculated the next-to leading order ChPT

prediction for Treg (summed over π0 and π� external
states),

Tregð−Q2;k ·pÞ

¼c0þc1Q2þð7M2
πþ4Q2Þ
6π2f2π

zcoth−1z
���
z¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4M2

π=Q2
p ; ð28Þ

with the convention that fπ ≈ 132 MeV. The coefficients
c0 and c1 depend on various low-energy constants and on
the pion mass. However, the contribution from these terms
to ΔaμðLÞ is identically zero, as can be seen explicitly from
Eq. (22). Evaluating the remaining piece, we find that this
contributes negligibly as shown in the third column of
Table I. Note that, as can be seen from Eq. (21), using
twisted boundary conditions with θuk − θdk ¼ π=2 sets the
FπðQ2Þ-dependent piece identically to zero, leaving only
the contribution from the neutral pion in Treg. This
dramatically reduces the leading L dependence.
When separating the x0 regions as in Eq. (4), it is useful

to identify the cut value τc that minimizes the systematic
errors given by the finite-volume effects of aμðLjx0 < τcÞ,
plus the uncertainties (finite volume or otherwise) entering
through areconμ ðLjx0 > τcÞ. In Fig. 1 we plot the leading
finite-L correction of aμðLjx0 < τcÞ versus τc for vari-
ous MπL.
The same data are presented in Table II, where we

additionally vary the pion mass. At constant MπL, increas-
ing the pion mass leads to a decrease in mμL that translates
into significantly enhanced volume effects. This behavior is
predicted by an asymptotic expansion inmμL, but the latter
exhibits poor convergence so that the dependence is not
obvious for these values. Nonetheless, the enhancement is
clearly realized in these results, with a contribution of ∼2%
for ΔaμðLÞ (τc → ∞) with MπL ¼ 4 and Mπ=M

phys
π ¼ 3.

Conclusions.—We have presented a fully nonperturba-
tive analysis of the leading finite-L effects in aHVP;LOμ . In
particular, Eq. (6) relates the leading exponential,
exp½−MπL�, to the Compton amplitude of an off-shell
photon scattering against a pion in the forward limit. We
also argue that the contribution coming from the one-pion
exchange in the Compton amplitude (corresponding to the
two-pion exchange in aHVP;LOμ ) is the dominant contribu-
tion. We estimate the effect quantitatively using models for
the electromagnetic spacelike pion form factor.
The results presented here provide an additional tool for

systematically removing the finite-L effects in aHVP;LOμ .
One option is to directly improve the result on
each ensemble with a dedicated measurement of FπðQ2Þ.
A limitation of this analysis is that the neglected
exp½− ffiffiffi

2
p

MπL� terms may not be small. As argued in
Ref. [20], this is certainly true in the case of free pions with
MπL ≈ 4 with leading-exponential domination setting in
around MπL ≈ 6. In this vein we also stress that our full,
nonperturbative result for the leading exponential can be
used to assess and improve predictions, e.g., from ChPT, by

FIG. 1. Plot of the FπðQ2Þ contribution to ΔaμðLjx0 < τcÞ
versus τc, taking the monopole ansatz as in Table I and
Mπ ¼ Mphys

π , for various values of MπL. The horizontal lines
give τc ¼ ∞, i.e., the full value for ΔaμðLÞ.

TABLE II. Tabulated values of the FπðQ2Þ contribution to
ΔaμðLjx0 < τcÞ for various MπL, Mπ , and τc. We vary the
monopole mass according to the result of Ref. [39]: M2 ¼
0.517ð23Þ GeV2 þ 0.647ð30ÞM2

π and hold the reference value
fixed at aHVP;LOμ ¼ 700 × 10−10.

½ΔaμðLjx0 < τcÞ=aHVP;LOμ � × −102

Mπ ¼ Mphys
π

MπL τc ¼ 1 fm 1.5 fm 2 fm 2.5 fm ∞

4.0 0.0611 0.250 0.550 0.864 1.26
5.0 0.0198 0.0896 0.220 0.385 0.851
6.0 0.006 49 0.0313 0.0825 0.155 0.461
7.0 0.002 14 0.0108 0.0300 0.0593 0.226
8.0 0.000 72 0.003 74 0.0108 0.0221 0.104

Mπ ¼ 2Mphys
π

MπL τc ¼ 1 fm 1.5 fm 2 fm 2.5 fm ∞

4.0 0.231 0.682 1.08 1.28 1.38
5.0 0.0808 0.264 0.456 0.578 0.662
6.0 0.0281 0.0996 0.185 0.247 0.302
7.0 0.009 75 0.0369 0.0727 0.102 0.134
8.0 0.003 39 0.0135 0.0280 0.0411 0.0576

Mπ ¼ 3Mphys
π

MπL τc ¼ 1 fm 1.5 fm 2 fm 2.5 fm ∞

4.0 0.455 1.14 1.61 1.82 1.92
5.0 0.162 0.430 0.634 0.730 0.778
6.0 0.0574 0.162 0.249 0.293 0.316
7.0 0.0204 0.0609 0.0970 0.117 0.128
8.0 0.007 24 0.0227 0.0376 0.0462 0.0515
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correcting the leading exponential while keeping the fixed-
order prediction for the higher exponentials in the series.
This is well motivated since the structure of the pions
becomes less important as the exponentials become more
suppressed.
On a technical note, it will be interesting to pursue the

Hamiltonian method (already used in Ref. [40]) for
identifying finite-L effects in other contexts.

The authors would like to acknowledge and thank Mattia
Bruno, Martin Lüscher, Harvey Meyer, and Nazario
Tantalo for useful discussions and for helpful comments
on a previous version of this Letter.

*maxwell.hansen@cern.ch
†agostino.patella@physik.hu-berlin.de

[1] G.W. Bennett et al. (Muon (g − 2) Collaboration), Phys.
Rev. Lett. 92, 161802 (2004).

[2] G.W. Bennett et al. (Muon (g − 2) Collaboration), Phys.
Rev. D 73, 072003 (2006).

[3] F. Jegerlehner and A. Nyffeler, Phys. Rep. 477, 1 (2009).
[4] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,

Eur. Phys. J. C 77, 827 (2017).
[5] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D

97, 114025 (2018).
[6] R. M. Carey et al., https://www.osti.gov/biblio/952029/.
[7] J. Grange et al. (Muon (g − 2) Collaboration), arXiv:

1501.06858.
[8] D. Flay (Muon (g − 2) Collaboration), Proc. Sci.,

ICHEP2016 (2017) 1075.
[9] R. Hong (Muon (g − 2) Collaboration), in Proceedings of

the 13th Conference on the Intersections of Particle and
Nuclear Physics (CIPANP 2018) Palm Springs, California,
USA, 2018 (2018) [arXiv:1810.03729].

[10] K. Shimomura, Hyperfine Interact. 233, 89 (2015).
[11] Y. Sato (E34 Collaboration), Proc. Sci., KMI2017 (2017)

006.
[12] T. Blum, Phys. Rev. Lett. 91, 052001 (2003).
[13] F. Burger, X. Feng, G. Hotzel, K. Jansen, M. Petschlies, and

D. B. Renner (ETM Collaboration), J. High Energy Phys. 02
(2014) 099.

[14] B. Chakraborty, C. T. H. Davies, G. C. Donald, R. J.
Dowdall, J. Koponen, G. P. Lepage, and T. Teubner
(HPQCD Collaboration), Phys. Rev. D 89, 114501 (2014).

[15] B. Chakraborty, C. T. H. Davies, J. Koponen, G. P. Lepage,
M. J. Peardon, and S. M. Ryan, Phys. Rev. D 93, 074509
(2016).

[16] T. Blum, P. A. Boyle, T. Izubuchi, L. Jin, A. Jüttner, C.
Lehner, K. Maltman, M. Marinkovic, A. Portelli, and M.
Spraggs, Phys. Rev. Lett. 116, 232002 (2016).

[17] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C.
Jung, and C. Lehner, Phys. Rev. Lett. 118, 022005
(2017).

[18] B. Chakraborty, C. T. H. Davies, P. G. de Oliveira, J.
Koponen, G. P. Lepage, and R. S. Van de Water, Phys.
Rev. D 96, 034516 (2017).

[19] T. Blum et al. (RBC/UKQCD Collaborations), J. High
Energy Phys. 04 (2016) 063; 05 (2017) 34.

[20] M. Della Morte, A. Francis, V. Gülpers, G. Herdoíza,
G. von Hippel, H. Horch, B. Jäger, H. B. Meyer, A.
Nyffeler, and H. Wittig, J. High Energy Phys. 10 (2017)
020.

[21] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, and S.
Simula, J. High Energy Phys. 10 (2017) 157.

[22] S. Borsanyi et al. (Budapest-Marseille-Wuppertal Collabo-
ration), Phys. Rev. Lett. 121, 022002 (2018).

[23] D. Giusti, F. Sanfilippo, and S. Simula, Phys. Rev. D 98,
114504 (2018).

[24] N. Asmussen, A. Gerardin, J. Green, O. Gryniuk, G.
von Hippel, H. B. Meyer, A. Nyffeler, V. Pascalutsa, and
H. Wittig, EPJ Web Conf. 179, 01017 (2018).

[25] D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, S.
Simula, and C. Tarantino, Proc. Sci., LATTICE2018
(2018) 140.

[26] T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C.
Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang
(RBC and UKQCD Collaborations), Phys. Rev. Lett. 121,
022003 (2018).

[27] C. T. H. Davies et al. (Fermilab Lattice, LATTICE-HPQCD,
and MILC Collaborations), arXiv:1902.04223.
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