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We numerically investigate the threshold of black-hole formation in the gravitational collapse of
electromagnetic waves in axisymmetry. We find approximate power-law scaling ρmax ∼ ðη� − ηÞ−2γ of the
maximum density in the time evolution of near-subcritical data with γ ≃ 0.145, where η is the amplitude of
the initial data. We directly observe approximate discrete self-similarity in near-critical time evolutions with
a log-scale echoing period of Δ ≃ 0.55. The critical solution is approximately the same for two families of
initial data, providing some evidence of universality. Neither the discrete self-similarity nor the universality,
however, are exact. We speculate that the absence of an exactly discrete self-similarity might be caused by
the interplay of electromagnetic and gravitational wave degrees of freedom, or by the presence of higher-
order angular multipoles, or both, and discuss implications of our findings for the critical collapse of
vacuum gravitational waves.
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Critical phenomena in gravitational collapse were first
reported in the seminal work of Choptuik [1], who
considered families of initial data parametrized by a
parameter η, say. In dynamical evolutions, subcritical data
with sufficiently small η disperse to infinity, leaving behind
flat space, while supercritical data with sufficiently large η
form a black hole. Critical phenomena can then be
observed in the vicinity of the critical parameter η� that
separates the two regimes. Specifically, evolutions close to
criticality approach a self-similar critical solution, and
dimensional quantities characterizing the evolution follow
a power law. The mass of a black hole formed in
supercritical evolutions, for example, will satisfy

M ≃ ðη − η�Þγ; ð1Þ

while the maximum density observed during subcritical
evolutions scales with

ρmax ≃ ðη� − ηÞ−2γ; ð2Þ

where γ is the critical exponent (see also Ref. [2]).
Many aspects of these phenomena are quite well under-

stood, at least in the context of spherical symmetry (see,
e.g., Refs. [3,4] for reviews). In many cases for which there
exists a spherically symmetric critical solution, there is
compelling numerical evidence that this critical solution is
unique (for a given matter model) and is either discretely
self-similar (DSS, for example for massless scalar fields
[1]) or continuously self-similar (CSS, for example for
radiation fluids [5]). The critical exponent γ is the inverse of

the Lyapunov exponent of linear perturbations of the
critical solution [6–8]. For critical solutions that are
DSS, the oscillations in the critical solutions are reflected
by a periodic “wiggle” that is superimposed on the scaling
laws (1) and (2) (see Refs. [8,9]).
The situation is much less clear when a critical

solution—should it exist—cannot be expected to be spheri-
cally symmetric. Perhaps the most important example is the
gravitational collapse of (vacuum) gravitational waves.
While critical phenomena in this collapse were first
reported in the pioneering work of Abrahams and Evans
[10,11], their results have yet to be confirmed independ-
ently, despite the attempts of a number of groups and
researchers (see, e.g., Refs. [12–17]). Numerical work
seems to be hampered by the difficulty of finding suitable
coordinate conditions (see also Refs. [18,19]), while
analytical or semianalytical approaches are quite compli-
cated because of the inherent absence of spherical sym-
metry (compare with Refs. [20,21] for similar constructions
for scalar fields in spherical symmetry). Recent progress by
Ref. [18] has confirmed the critical exponent of γ ≃ 0.37
reported by Ref. [10], but has also raised new questions
about the nature of the critical solution.
Motivated by these considerations we study in this Letter

critical phenomena in the gravitational collapse of electro-
magnetic waves, which, to the best of our knowledge, have
not been considered before. We focus on axisymmetry, in
which case Maxwell’s equations can be reduced to a single
wave equation that, in many ways, is similar to that for a
scalar field. On the other hand, our setup shares with the
vacuum gravitational wave case the property that a critical
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solution cannot be spherically symmetric. In this sense we
hope that our work will also help our understanding of the
critical collapse of gravitational waves.
Axisymmetry is generated by a Killing vector field that,

in adapted coordinates, takes the form ξ ¼ ∂=∂φ. We also
assume equatorial symmetry (the reflection θ → π − θ),
which, together with axisymmetry, singles out the world-
line of a preferred central observer.
We express Maxwell’s equations in terms of a vector

potential Aa, so that the Faraday tensor is Fab ¼ ∇aAb−∇bAa. Here ∇a is the covariant derivative associated with
the spacetime metric. We employ a 3þ 1 foliation of the
spacetime, and introduce na ¼ α−1ð1;−βiÞ as the normal
vector on spatial slices, where α is the lapse function and βi

the shift vector. Without loss of generality we can choose a
gauge with Φ≡ naAa ¼ 0, so that Aa becomes purely
spatial. In the absence of charges, Maxwell’s equations can
then be written as

dtAi ¼ −αEi; ð3aÞ

dtEi ¼ −DjðαDjAiÞ þDjðαDiAjÞ þ αKEi; ð3bÞ

together with the constraint DiEi ¼ 0. Here Ei is the
electric field, Di the covariant derivative associated with
the spatial metric γij ≡ gij þ ninj, K ¼ −∇ana the mean
curvature, and dt ≡ ∂t − Lβ. In twist-free axisymmetry (see
Ref. [22]), Maxwell’s equations (3) can be reduced to a
single wave equation for Aφ ≡ ξaAa, and the stress-energy
tensor Tab can be computed from Eφ and spatial derivatives
of Aφ. (In axisymmetry with a twist, the electromagnetic
field and its stress-energy tensor can be expressed in terms
of Aφ and a new field Ãφ, where the potential Ãb generates
the dual �Fab of the Faraday tensor. Both Aφ and Ãφ are
again gauge invariant.) In particular, the energy density as
observed by a normal observer is

ρ≡ nanbTab ¼ 1

8π
ðEiEi þ BiBiÞ; ð4Þ

where Bi ¼ ϵijkDjAk is the magnetic field.
We choose time-symmetric and conformally flat initial

data, so that γij ¼ ψ4γ̂ij, where ψ is a conformal factor and
γ̂ij the flat metric. At t ¼ 0, we further choose Aφ ¼ 0 and

Eφ ¼ −
4η

ψ6σ2
ðe−ðr−r0Þ2=σ2 þ e−ðrþr0Þ2=σ2Þ; ð5Þ

which satisfies the constraintDiEi ¼ 0 identically (we note
that either Ai ¼ 0 or Ei ¼ 0 is consistent with time-
symmetric initial data, since in either case Si≡
γianbTab ¼ 0). Here η is a dimensionless amplitude, r is
our radial coordinate, r0 determines the location of the
maximum of Eφ, and σ is a constant of unit length. In the

following we will present all dimensional quantities
in units of σ, which is equivalent to setting σ ¼ 1 in the
above. Given a guess for ψ, we compute the density ρ
from Eqs. (5) and (4), and then solve the Hamiltonian
constraint

D2ψ ¼ γ̂ijDiDjψ ¼ −2πψ5ρ; ð6Þ
where Di is the covariant derivative associated with the flat
metric γ̂ij, to recompute ψ , iterating until convergence to
within a given tolerance has been achieved. We inserted the
factor of ψ6 in Eq. (5) in order to make the solution to
Eq. (6) unique; see, e.g., Refs. [23,24].
We then solve the Maxwell-Einstein system by evolving

the electromagnetic fields according to Maxwell’s
equations (3) together with Einstein’s equations for the
gravitational fields. We adopt the Baumgarte-Shapiro-
Shibata-Nakamura formulation of Einstein’s equations
[25–27], implemented in spherical polar coordinates r, θ,
and φ [28–30] with the help of a reference-metric formu-
lation (see, e.g., Refs. [31–34]).We also rescale components
of tensorial quantities with factors of r and sin θ, so that
singular terms at the center and on the axis can be handled
analytically. Specifically, we evolve the functions aφ ≡
Aφ=ðr sin θÞ and eφ ≡ Eφr sin θ rather than Aφ and Eφ

themselves. We use a grid setup similar to those used in
the critical collapse simulations of Refs. [35–40], except that
we implement an asymptotically logarithmic grid using the
approach of Ref. [41], allowing the innermost radial grid cell
to be about 4 × 10−3 the size of the outermost grid cell, and
use the method of lines with a fourth-order Runge-Kutta
method for the time evolution rather than the partially
implicit Runge-Kutta method [28]. As in the above refer-
ences we allow for radial regridding during the evolution,
and start with the outer boundary at rout ¼ 128. Unless noted
otherwisewe show results forNr ¼ 192 radial andNθ ¼ 18

angular grid points.
We evolve the initial data with the “one plus log” slicing

condition [42] with a “precollapsed” lapse α ¼ ψ−2 as
initial data. Similar to the experience with simulations of
vacuum gravitational waves, we found that “Gamma-
freezing” shift conditions [43,44] do not lead to stable
evolutions in the vicinity of the black-hole threshold
(compare Refs. [17,19]). We instead choose zero shift.
While this choice leads to instabilities once black holes
form in supercritical evolutions, it allowed us to approach
the threshold with subcritical data.
In the following we consider two families of the initial

data Eq. (5), a “centered” family with r0 ¼ 0 and an “off-
centered” family with r0 ¼ 3. For both families we fine-
tune the parameter η up to about jη − η�j ≃ 10−11 of the
threshold parameter η�, which we find to be η� ≃ 0.913 for
r0 ¼ 0 and η� ≃ 0.0703 for r0 ¼ 3. We then analyze the
density ρ at the center (where it takes an invariant mean-
ing), as well as
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Aξ ≡ ξaAa
ffiffiffiffiffiffiffiffiffi

ξaξa
p ¼ Aφ

ffiffiffiffiffiffiffigφφ
p ; ð7Þ

in order to probe the properties of the critical solution. (We
will refer to the solution at the threshold of black-hole
formation as the critical solution, even though we cannot
establish that this solution is unique.)
A spacetime is DSS if there exists a discrete conformal

isometry Φ such that Φ�gab ¼ e−2Δgab; that is, the space-
time looks the same when all proper lengths and times
have been shrunk by a factor of e−Δ. Matter fields scale
consistently with the Einstein equations. In our system,
this means Φ�Aξ ¼ Aξ. In order to analyze this behavior
we introduce auxiliary coordinates xμ ¼ ðT; λ; ϑ;φÞ,
adapted to both the discrete self-similarity and axisymmetry,
for diagnostic purposes. In these coordinates, gμν ¼
e−2TḡμνðT; λ; ϑÞ with ḡμνðTþΔ;λ;ϑÞ¼ ḡμνðT;λ;ϑÞ, mean-
ing thatΦmanifests itself as a periodicity in T with echoing
period Δ. There are many such coordinate systems in
general. Here, let τ be the proper time of an observer at
the center and τ� the accumulation point of the self-
similarity. We then define T ≡ − lnðτ� − τÞ þ T0, where
both τ� and T0 depend on the family of initial data. We also
define the lines of constant ðT; ϑ;φÞ to be null geodesics,
starting from the center in the direction ðϑ ¼ θ;φÞ at time T,
and with affine parameter λ normalized such that λ ¼ 0 and
ðdt=dλÞTðdT=dtÞr ¼ 1 at the center.
In Fig. 1 we show plots of Aξ as a function of λ and T for

near-threshold solutions in both the centered and the off-
centered families. While the graphs are not identical, they
show remarkable similarities at intermediate times
−1.5≲ T ≲ 2.0. We take these similarities as an indication
of at least an approximate universality of this threshold
solution.
It is also evident from Fig. 1, however, that the threshold

solution is not strictly periodic. A Fourier analysis of Aξ

along lines of constant λ shows a peak frequency that
corresponds to an echoing period of Δ ≃ 0.55 for both the
centered and off-centered data.

The absence of a strict periodicity is also visible in Fig. 2,
where we show the density Eq. (4) evaluated at the center as
a function of T for near-critical centered and off-centered
evolutions (see also [45]). The amplitude of the central
density’s oscillations increases approximately as expected
for self-similar contraction, and both evolutions display
similar features, hinting at some notion of universality in
the critical solution—but again the oscillations are not
strictly periodic, suggesting that the critical solution is not
exactly DSS.
The power-law scalings Eqs. (1) and (2) are a result of

the growth of linear perturbations of the critical solution.
Different fine-tuning, i.e., different values of jη� − ηj, lead
to different size perturbations, which therefore become
nonlinear at different times. The length scale of the self-
similar solution at this moment endows the subsequent
evolution with a length scale, and hence determines

FIG. 1. Plots of Aξ in the equatorial plane (θ ¼ π=2) as a function of the affine parameter λ of null geodesics that originate from the
center at time T. The left-hand panel shows results for centered data (r0 ¼ 0 with τ� ¼ 5.66 and T0 ¼ 0), while the right-hand panel
shows results for off-centered data (r0 ¼ 3 with τ� ¼ 10.58 and T0 ¼ 0.42).

FIG. 2. The density ρ, evaluated at the center, as a function of
T ¼ − lnðτ� − τÞ þ T0 for near-critical centered and off-centered
evolutions. In both cases the amplitude of the central density’s
oscillation increases approximately with ðτ� − τÞ−2 ¼ e2ðT−T0Þ,
which is consistent with self-similar contraction. Both evolutions
also display similar features, again suggesting an approximate
universality. As before, however, the oscillations are not strictly
periodic, indicating that the critical solution is not exactly DSS.
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dimensional quantities like the black-hole mass and the
maximum central density. For CSS critical solutions, the
power laws (1) and (2) are exact, while the periodicity of a
DSS critical solution results in a periodic “wiggle” that is
superimposed on the scaling laws (see Refs. [8,9]). Given
that we do not find an exactly DSS critical solution, we also
do not expect deviations from power-law scalings to be
exactly periodic. This can be seen in Fig. 3, where we plot
the maximum encountered central density as a function of
η� ¼ η, where we have fit the values of η� to obtain
behavior as close to power laws as possible. While our
results for both centered and off-centered evolutions
approximately follow a power law (2) with γ ≃ 0.145 over
several orders of magnitude, deviations from these power
laws do not appear to be strictly periodic as one would
expect for a strictly DSS critical solution.
In summary, our simulations suggest the existence of a

self-similar critical solution at the threshold of black-hole
formation in the gravitational collapse of electromagnetic
waves. Unlike in many other examples of critical collapse,
however, the critical solution appears to be neither CSS nor
exactly DSS; instead we observe only approximately
periodic behavior. Similarities between the critical solution
obtained from different families of initial data hint at
features of universality, but again this universality is not
exact. The absence of an exactly DSS critical solution is
also reflected in the scaling behavior, which shows only
approximately periodic deviations from a power law.
We suspect that this behavior is related to the absence

of spherical symmetry. For scalar fields and fluids, for

example, the critical solution is spherically symmetric. In
this case, the critical solution can be described by spherical
modes alone, and the gravitational fields do not possess
independent degrees of freedom. For electromagnetic
waves, however, the critical solution cannot be spherically
symmetric. Given the nonlinear nature of the critical
solution, it therefore cannot be described by just one
angular mode; moreover, the gravitational fields can now
carry gravitational radiation and hence possess independent
degrees of freedom.
One possible explanation therefore invokes the compe-

tition between the critical solution of the electromagnetic
waves and that of the gravitational waves. As a toy model
for critical phenomena in the collapse of two competing
dynamical systems, we recently studied the mixture of
scalar fields and Yang-Mills fields, both restricted to
spherical symmetry [46]. We found that, at sufficiently
late times with sufficiently good fine-tuning, the scalar field
always dominates. At earlier times, however, the critical
solution may be described as a mixture of both fields’
critical solutions, and the transition from the dominance of
one field to the other can be observed, for example, in the
scaling laws. While our findings for electromagnetic fields
do not suggest such a transition from the dominance of one
system to another, it would be of interest to generalize our
work and evolve electromagnetic-wave initial data with
different initial gravitational wave content. This could be
done, for instance, by choosing the initial conformally
related metric to represent a gravitational wave, rather than
flat space.
It is also possible, however, that the absence of a strictly

DSS critical solution is inherently related to the presence of
multiple angular modes. One might attempt to describe
such a system in terms of “multioscillators” akin to those of
Ref. [47]. The presence of different noncommensurate
frequencies could explain the absence of an exact perio-
dicity; moreover, for different families of initial data,
different “oscillators” might enter with different phases,
possibly explaining the absence of an exact universality.
While we can only speculate about what causes the

absence of an exactly DSS critical solution in the collapse
of electromagnetic waves, our findings may well have
bearing on critical phenomena in the collapse of vacuum
gravitational waves, for which the critical solution also
cannot be spherically symmetric. While this critical sol-
ution is often expected to be DSS, we are not aware of any
firm evidence—either analytical or numerical—that sup-
ports this hypothesis. Still to this date, the strongest
evidence was presented by Abrahams and Evans [10,11].
In Fig. 6 of Ref. [11], for example, they show approximate
echoing in metric functions. While the echoes do not
overlap exactly (note also the absence of a periodicity in
their Fig. 2), Abrahams and Evans attributed the differences
to uncertainties in the determination of the echoing period,
as well as the lack of sufficient fine-tuning. In light of our

FIG. 3. The maximum central density for subcritical centered
(r0 ¼ 0, blue, above the black dashed line) and off-centered
(r0 ¼ 3, red, below the dashed line) evolutions, using Nr ¼ 64N
radial and Nθ ¼ 6N angular grid points. The dashed line
corresponds to scaling with γ ¼ 0.145. The fitted values of

ηðNÞ
� depend on the resolution N. Convergence of these values
for r0 ¼ 0 is demonstrated in the inset, where we have adopted a
Richardson extrapolated value of η∞� ¼ 0.912895, and where the
dotted line is proportional to N−4, indicating the expected fourth-
order convergence.
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findings here, however, we wonder whether their results
instead provided the first suggestion that the critical
solution in the collapse of vacuum gravitational waves
is, indeed, not exactly DSS. Similarly, Ref. [18] found
deviations from a simple power law in the scaling of the
Kretschmann scalar for the collapse of vacuum gravita-
tional waves (see their Fig. 4), but could not establish these
deviations to be periodic. Comparing with our Fig. 3, we
again suspect that these deviations are indeed not periodic,
and are instead evidence of the absence of an exact DSS in
the critical solution for vacuum gravitational waves.
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