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We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely, the
merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two
nonspinning unequal mass black holes, we observe that the MOTS associated with the final black hole
merges with the two initially disjoint surfaces corresponding to the two initial black holes. This yields a
connected sequence of MOTSs interpolating between the initial and final state all the way through the
nonlinear binary black hole merger process. In addition, we show the existence of a MOTS with self-
intersections formed immediately after the merger. This scenario now allows us to track physical quantities
(such as mass, angular momentum, higher multipoles, and fluxes) across the merger, which can be
potentially compared with the gravitational wave signal in the wave zone, and with observations by
gravitational wave detectors. This also suggests a possibility of proving the Penrose inequality
mathematically for generic astrophysical binary back hole configurations.
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The merger of two black holes (BHs) is often visualized
by an event horizon (EH), the boundary of the portion of
spacetime causally disconnected from far away observers.
An example of this is Ref. [1], showing the well known
“pair of pants” picture of the EH for a binary black hole
collision. However, EHs are not generally suitable for
extracting quantities of physical interest and tracking them
all the way through the merger in quantitative studies. In
perturbative regimes or in cases when the end state of the
EH is known, it is sometimes possible to use EHs to
calculate mass, angular momentum, energy fluxes etc., [2],
but this does not carry over to nonperturbative situations
[such as during a binary black hole (BBH) merger] [3–6].
It is much more satisfactory, both for conceptual and

practical reasons, to use instead marginally trapped surfa-
ces, first introduced by Penrose for proving the singularity
theorems [7]. Let S be a closed 2-surface with in- and out-
going future-directed null normals na and la, respectively,
and let ΘðnÞ and ΘðlÞ be the corresponding expansions.
Trapped surfaces have ΘðlÞ < 0, ΘðnÞ < 0, while a margin-
ally outer trapped surface (MOTS) has ΘðlÞ ¼ 0 with no
restriction on ΘðnÞ. The outermost MOTS on a given
Cauchy surface, known as an apparent horizon (AH),
has been used to locate BHs even in the earliest numerical
BH simulations (see, e.g., Ref. [8]). The presence of a
trapped surface in a spacetime shows the presence of a

singularity and an EH. MOTSs were thus used as proxies
for EHs which are much harder to locate numerically.
Over the last two decades, however, it has become clear

that MOTSs are much better behaved than previously
expected. The world tube traced out by a MOTS during
time evolution can be used to study energy fluxes, the
evolution of mass, angular momentum, and higher multi-
pole moments [9–13]. The world tube can be used as an
inner boundary for Hamiltonian calculations, and the laws
of BH mechanics hold [3,4,14–18]. In general the world
tubes can be null, spacelike, timelike, or of mixed signature
[3,14,19–22]. In stationary spacetimes and in perturbative
settings, these calculations coincide with expectations from
EHs, but this framework is generally applicable.
Despite this progress, there remains a significant gap

in our understanding. For a BBH merger it is routine to
compute physical quantities for either the two separate
initial BHs or for the common final BH. It is not clear if
there should exist a relationship between the two regimes
separated by the merger. Nor is it known whether there is a
connected sequence of MOTSs which takes us from the two
separated individual MOTSs to the final one. The existence
of such a connected sequence would allow the possibility of
tracing physical quantities all the way through the dynami-
cal and nonlinear merger process. These predictions could
potentially be compared with calculations of gravitational
wave (GW) signals in the wave zone and eventually with
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observations of GWs, thus offering a unique probe of
dynamical and nonlinear gravity.
Another motivation for studying the merger of MOTSs is

related to cosmic censorship and the Penrose inequality. In
1973, Roger Penrose proposed an inequality relating the
area A of a BH horizon to the spacetime’s total Arnowitt-
Deser-Misner (ADM) mass MADM [23]:

A ≤ 16πM2
ADM: ð1Þ

As originally formulated by Penrose, this inequality applies
to a marginally trapped surface S formed during gravita-
tional collapse (though there are examples of AHs which
violate the inequality [24]). A proof of this inequality
without using event horizons is seen as strong support
for cosmic censorship. Thus far, the inequality has been
established rigorously for time symmetric initial data for an
arbitrary number of BHs [25–27] (see Refs. [28–31] for
some alternate approaches, and Ref. [32] for a review). For
a BBH system, the Penrose inequality implies

A1 þ A2 ≤ 16πM2
ADM; ð2Þ

where A1;2 are the initial areas of the two individual BHs,
taken to be two disjoint MOTSs S1 and S2. Let Sf be the
final MOTS with area Af. If there is a connected sequence
of MOTSs which takes us from S1;2 to Sf, and if
A1 þ A2 ≤ Af, then this suggests an alternative route for
a mathematical proof of the inequality for multiple BHs.
Overview of results.—We address this question by

numerically simulating the head-on collision of two
unequal mass black holes. A rendering of the numerical
data from one of our simulations is shown in Fig. 1; this is
the analog of the “pair of pants” picture for an event
horizon. The world tubes traced out by the two individual
MOTSs touch at a time ttouch and then penetrate each other.
Sometime before ttouch, at tbifurcate, the common horizon is
formed and immediately bifurcates into an inner and outer
branch. The outer branch approaches equilibrium as it loses
its asymmetries. In contrast, the inner branch becomes
increasingly distorted and merges with the individual
MOTSs precisely at the moment when they touch.
Interestingly, as shall be detailed below, the inner branch
still continues to exist after this merger, but it develops self-
intersections, thereby providing evidence for topology
change.
For the area increase and the Penrose inequality, also to

be discussed further below, we follow the individual
MOTSs up to the point when they touch, and then follow
the common MOTS (initially backwards in time), even-
tually reaching the final equilibrium state of the outer
MOTS. For the world tubes shown in Fig. 1, this leads to a
plot of the area as a function of time shown in Fig. 2. We
start with the two BHs far apart, represented by the MOTSs
S1 and S2, and track their areas A1 and A2, respectively.

The branches I and I0 (dotted red) show A1 þ A2 which is
always increasing; I and I0 are, respectively, the portions
before and after ttouch.
The common horizon is formed with a bifurcation into

inner and outer portions Sinner and Souter, respectively, at the
time tbifurcate. Sinner generates the branch II (solid green),

FIG. 1. The analog of the pair of pants picture for MOTSs from
our numerical simulation. The tubes traced out by the individual
MOTSs (colored red and purple) touch and penetrate each other.
When the individual black holes get sufficiently close a common
horizon is formed, which bifurcates into an inner branch (colored
green) and an outer branch (colored blue). The outer branch
settles down to the final equilibrium state, while the inner branch
merges with the individual horizons precisely at the time when
they touch.

FIG. 2. The areas of the various MOTSs as functions of time
for the same simulation shown in Fig. 1. The area of the AH is
shown in blue, the inner common MOTS in green, and the sum
of the areas of the individual MOTSs in red. Further details in
text. Motivated by our choice of parameters, we measure in
units of M ¼ MADM=1.3.

PHYSICAL REVIEW LETTERS 123, 171102 (2019)

171102-2



which initially decreases in area and eventually merges
with I at time ttouch (which also demarcates II and II0).
Segment III (dashed blue) is traced out by the AH which
has increasing area and asymptotes to a final Schwarzschild
or Kerr horizon. The required sequence of MOTSs is then
I þ II þ III (segment II is traversed backwards in time); if
we have monotonic area increase along this sequence, the
Penrose inequality is guaranteed to hold. The portions I0
and II0 are not part of this sequence. Subtleties about the
monotonicity of the area will be discussed further below.
Methodology.—Our main technical tool is a new method

(and software) for locating MOTSs numerically which
is capable of finding even very highly distorted MOTSs
[33–35]. This is a modification of the commonly used
algorithm known as AHFinderDirect [36]. It was previously
validated for sequences of time-symmetric initial datasets,
and is here applied during a time evolution.
We use the Einstein toolkit [37,38] infrastructure for

our calculations. We set up initial conditions via the two-
puncture single-domain method [39] and enforce axisym-
metry following Ref. [34]. We solve the Einstein equations
in the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
mulation as in Ref. [40], using a 1þ log slicing and a Γ-
driver shift condition, with details of our initial and gauge
conditions as described in Ref. [41].
We use sixth order finite differencing on a uniform

grid spanning ½0; 10� × ½0; 0� × ½−10; 10� and a 6th order

Runge-Kutta time integrator. Most calculations shown here
were performed with a resolution of h ¼ 1=960. Additional
resolutions were used to verify convergence. All parameter
files are available in the repository [35].
The merger of the inner horizons.—We consider head-on

collisions of nonspinning BHs starting with Brill-Lindquist
(BL) initial data [42], representing a BBH system at a
moment of time symmetry. The bare masses of the two
BHs are denoted ðm1; m2Þ and d0 is the initial separation.
While the Penrose inequality is known to hold in BL data
[25–27], no such time symmetry is expected to occur in any
astrophysical situation in our universe. Time symmetry
implies that the two BHs approach each other and merge
also under time reversal. Furthermore, the incoming radi-
ation at past null infinity mirrors the outgoing radiation at
future null infinity.
Some partial results on the behavior of Sinner were

known previously [11,13]: Sinner decreases rapidly in
area initially and becomes increasingly distorted as it
approaches S1 and S2. With our new horizon finder,
we are able to track Sinner up to the merger point, and

FIG. 3. The shapes of the horizons at various times in the simulation; this is the same simulation as shown in Figs. 1 and 2. The
numerical values of ttouch and tbifurcate are found to be ttouch ≈ 1.374602M and tbifurcate ≈ 5.537818M, respectively. The left panel is
about 0.1254M after tbifurcate, whereas the middle panel is about 0.0024M before ttouch. The right panel is at the end of the simulation,
well after ttouch.

FIG. 4. A closer look at the self-intersection for the right panel
in Fig. 3. FIG. 5. Different measures showing the merger S1;2;inner.
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beyond. We present our results first for a particular initial
configuration m1 ¼ 0.5, m2 ¼ 0.8 and d0 ¼ 1.3. We
define M ¼ MADM=ðm1 þm2Þ ¼ MADM=1.3.
We have already shown the world tubes traced out by the

MOTSs for this configuration in Fig. 1 and the areas in
Fig. 2. The shapes of the various marginal surfaces at
selected instants of time are shown in Fig. 3. The left panel
shows the MOTSs after the AH has formed and Sinner is
fairly distorted. The center panel shows the MOTSs shortly
before S1;2 touch. The inset shows a close-up of the neck of
Sinner, which is very close to pinching off. The right panel
shows the horizons at a later time when S1;2 penetrate each
other. The penetration of the individual MOTSs was first
observed in Refs. [43,44] (see also Ref. [45]). Interestingly,
Sinner still continues to exist at this time, but it is seen to
develop self-intersections; Fig. 4 shows a close-up of the
self-intersection. At later times S1 and S2 continue to move
closer and the “knot” in Sinner becomes bigger. We lose
numerical resolution at later times when the horizons get too
close to the punctures, and we have not attempted here to
study the eventual fate of the inner horizons. It is suggested
in Ref. [43] that S1;2 can cross the punctures and merge,
though discontinuities are observed when the punctures
cross the surfaces. These discontinuities might in fact hide
further topology change as the punctures cross theMOTSs
and could perhaps be resolved with our horizon finder.
We are led to conjecture that Sinner has a cusp precisely

at ttouch, and it coincides with S1 ∪ S2 at this time; the
self-intersections develop immediately after ttouch. While
numerical methods will likely not be able to precisely
resolve the instant when the cusp is present, we can provide
strong evidence that the time of the cusp formation coincides
with ttouch. Figure 5 shows various quantities which must all
vanish at the point whenS1;2 touch. First, it shows the proper
distance between S1 and S2 measured at facing points along
the z axis. Thenwe plot the proper circumference of the neck
of Sinner, and the proper distance between S1;2 and Sinner

along the z axis (the latter distances are scaled up by a factor
of 10 to be properly visible on this plot). To define the “neck”
for a self-intersecting MOTS, we look at all the curves of
rotation obtained by starting with a point on the knot and

rotating it around the symmetry axis. The neck is the curve
which has smallest proper circumference. The dotted lines
show the extrapolation to zero whence we see that, as far as
we can tell, Sinner pinches off at the same time [within
Oð10−5ÞM] when S1;2 touch, and the self-intersections
occur immediately after ttouch.
The area increase law.—From Fig. 2, one might con-

clude that the area increases monotonically along the
sequence I þ II þ III discussed earlier. A closer look near
ttouch (see Fig. 6) reveals a small area increase ΔA just prior
to ttouch; the area is not strictly monotonically increasing
along the sequence I þ II þ III. The area of course does
increase when we compare the final black hole with the
sum of the initial areas; thus the Penrose inequality is valid.
This result indicates that a mathematical proof using this
route must necessarily address this behavior, and there
might be important physical information hidden in this
area increase.
We repeat the simulations for different mass ratios and

initial separations. The values of ΔA over a portion of the
parameter space are shown in Fig. 7. The x axis is the
proper distance d̃0 between S1;2 in units of the ADM mass,
while the y axis is the ratio of the irreducible masses

Mð1;2Þ
irr ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A1;2=16π
p

of S1;2. The values of ΔA are shown
next to the points and also indicated by the size of the dots.
The configurations within the shaded region are those
which have the common AH already present in the initial
data. For a fixed mass ratio, ΔA decreases as d̃0 is
increased, which suggests that astrophysical initial data
may have vanishing ΔA.
Conclusions.—We have studied the process by which

two marginal surfaces merge to form a common final BH.
This is similar to and complements the “pair of pants”
picture of a BH merger using EHs. We have provided
strong numerical evidence that there is a connected
sequence of marginal surfaces in this process. This will
potentially allow us to track physical quantities through the
merger and to compare with results obtained from gravi-
tational waveforms. We find a new phenomenon, namely,
the formation of MOTSs with self-intersections. Finally,
this scenario suggests a different way of attacking the

FIG. 6. A closer look at Fig. 2 near ttouch showing the
anomalous area increase of Sinner.

FIG. 7. Area increases for various initial conditions. See text for
details.
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Penrose inequality. The area increase ΔA of Sinner just
before the merger is still to be understood and, given the
thermodynamic interpretation of the area, this may contain
useful physical information.
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