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We construct an interacting integrable Floquet model featuring quasiparticle excitations with
topologically nontrivial chiral dispersion. This model is a fully quantum generalization of an integrable
classical cellular automaton. We write down and solve the Bethe equations for the generalized quantum
model and show that these take on a particularly simple form that allows for an exact solution: essentially,
the quasiparticles behave like interacting hard rods. The generalized thermodynamics and hydrodynamics
of this model follow directly, providing an exact description of interacting chiral particles in the
thermodynamic limit. Although the model is interacting, its unusually simple structure allows us to
construct operators that spread with no butterfly effect; this construction does not seem possible in other
interacting integrable systems. This model exemplifies a new class of exactly solvable, interacting quantum

systems specific to the Floquet setting.
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Introduction.—Periodically driven (or “Floquet”) quan-
tum systems have become a major theme in many-body
physics [1-15]: driving enables one to engineer exotic states
of matter experimentally [16—19] to realize phases that are
absent in equilibrium [7-9,20-29]. Floquet dynamics are
captured by a unitary , which evolves the system by a single
period; when £ is not smoothly connected to the identity, the
resulting dynamics are distinct from those of any “static”
Hamiltonian (e’ is always deformable to the identity). This
is particularly transparent in noninteracting Floquet systems:
their band structure is compactified in both quasimomentum
and quasienergy, which allows for band structures that wind
nontrivially in quasienergy [Fig. 1(a)], which cannot be
realized in local lattice Hamiltonians [6—10,20,21]. Thus,
Floquet systems can host unpaired chiral modes, while
Hamiltonian dynamics only admit chiral modes on the
boundaries of higher-dimensional systems [6,8,30,31]. In
systems with nontrivial quasienergy winding, each single-
particle state has a quantized time-averaged current; proto-
cols that accomplish such adiabatic particle transfer are
called “Thouless pumps” [6,32,33].

These topological features remain long-lived in certain
interacting models [33-35]; however, interactions generally
heat a system up to infinite temperature, unless it is
integrable or many-body localized (MBL) [36-43].
Although a MBL system can protect Floquet topological
phases [22,43-57], such localized phases do not host chiral
modes. Interacting integrable systems are another broad
class of systems that do not thermalize [58—61]; whether or
not distinctively Floquet versions exist has been less
discussed [62-66].
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This Letter presents an interacting integrable Floquet
model that hosts quasiparticles with a nontrivial winding
number, i.e., an integrable Thouless pump. Unlike previously
proposed interacting integrable Floquet systems, this model
is not smoothly connected to any Hamiltonian and is thus
inherently Floquet, rather than an “integrable Trotterization”
[66]. This model is a fully quantum extension of an integrable
cellular automaton known as rule 54, or the Floquet
Fredrickson-Andersen model (FFA) [67-69]. The FFA
model’s simplicity has elucidated various puzzles concerning
hydrodynamics and operator growth in generic interacting
integrable systems [68—75]. The FFA model can be written as
a Floquet unitary comprising local gates, but it is classical in
that it maps computational-basis product states to one
another. Although the FFA model has chiral quasiparticles,
they do not disperse, but instead all have one of two group
velocities, +=1. The dispersing FFA (DFFA) generalization
we introduce here alternates the FFA dynamics with that of a
particular strictly local Hamiltonian, making the model fully
quantum by restoring dispersion while preserving integra-
bility. This generalization remains simple enough that the
Bethe equations can be solved analytically—a remarkable
feature for an interacting model. This model is simple
because the quantization of either quasiparticle species
depends only on the total number of quasiparticles of each
species, and not on their rapidities. This simplicity also
manifests in the existence of special local operators that
remain lightly entangled at all times, as in the FFA model
[72,75]. This model is the first representative of a class of
interacting integrable models specific to the Floquet setting,
featuring stable chiral quasiparticles.
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FIG. 1. Chiral quasiparticles in the DFFA model. (a) Dispersion

relations showing the (bare) single-particle Floquet quasienergies
&(k) for both + and — quasiparticles, for 4 = 0.3 (solid lines) and
A = 0.65 (dashed lines). Both bands are topological (chiral) as
they wrap around the periodic quasienergy direction and can only
exist in a periodically driven system. Note that, for 1 = 0.65, the
=+ particles can be left (right) moving for some range of momenta.
(b) Soliton gas picture. The scattering events in the DFFA model
factorize onto simple two-body processes, which semiclassically
correspond to a displacement Ax = +1 after a collision, inde-
pendent of the momenta of the quasiparticles.

Model.—We consider a chain of 2L qubits (spins—%) with
dynamics generated by the repeated application of the
unitary evolution (Floquet) operator

F() = e ] 010 [[O

it (1)
jeven Jjodd

with gates U, ;;,;;; = CNOT(1 — 2)CNOT(3 - 2)
Toff(1,3 — 2), in terms of controlled NOT (CNOT) and
Toffoli gates [76], and H is a Hamiltonian that we will
specify below. In simpler terms, U ;_, Jj.j+1 18 the instruction
“flip spin j if one or both of its nearest neighbors is up.” For
A = 0, this model reduces to FFA, F(O) = FO.

FFA limit.—On its own, F, o hosts two species of chiral
quasiparticle excitations above the vacuum state
|0) =|)]...]), indexed v = +1 for “right movers” and
v = —1 for “left movers.” We regard the 2L physical sites
as L unit cells: the nth unit cell contains the A site 2n — 1
and B site 2n. If both of these sites are 1, then there is a
v = +1 right-moving doublon in cell #; if the B site of cell
n—1 and A site of n are both 1, there is a v = —1 left-
moving doublon in cell n. Additionally, we refer to isolated
1’s as “molecules”, which contain one of each mover: a
molecule on the A site of cell n corresponds to both v = £1
movers in cell n; a B molecule in cell n corresponds to a +

at n and — at n + 1. The molecule states | 1| arise during
collisions between the two species. Apart from these
collisions, F, acts by changing the positions of the =+
particles by +1 unit cell and conserves independently the
number of each, V.

In the FFA model, all quasiparticle excitations have two
possible velocities and no dispersion. The structure of
conservation laws in this model differs from that of generic
interacting integrable models, in which a generalized Gibbs
ensemble (GGE) [77] can be fully specified through the
distribution of quasiparticle velocities. In the FFA model,
there are only two velocities, which do not fully specify a
state. The remaining conservation laws correspond to
asymptotic “spacings” between adjacent quasiparticles of
the same species [69]. In the zero-density limit, the bare
spacings between same-species quasiparticles are con-
served, since all such quasiparticles have the same velocity.
At nonzero densities, one can define an asymptotic spacing
by accounting for interaction effects: e.g., suppose we
have two + quasiparticles that are n steps apart; the
quasiparticle on the right collides first with a — quasipar-
ticle and is time delayed by one step. Therefore, while there
is a — quasiparticle between them, the two + quasiparticles
will be exactly n — 1 steps apart if their asymptotic spacing
is n. Given a spin configuration, its asymptotic spacings can
be found numerically by simulating its free expansion into
vacuum [69].

Adding dispersion—We now construct H, the
Hamiltonian part of (1), to generate dispersion while
maintaining integrability. Conservation of particle number
automatically precludes many simple terms, i.e., most
single spin processes. Even a pair-hopping term like
6767,,67,,67,5 will not conserve N: it can bring two
+ doublons to neighboring unit cells, producing a
— doublon on the intervening bond. The simplest

Ni conservmg operator that dlsperses quasiparticles is

At ot
h]_d] 16; ‘7,+1
gously, i;=1(1+6 %)1. This term “checks” that it would not
create any new qua51partlcles before moving one. Setting

61+201+3d]+4, where d;=1(1-6° %) [analo-

H=Y" J(fl j—l—fz;) would give a simple dispersive extension
of the FFA model; however, we cannot confirm that this
preserves integrability, so we add other terms,

_ NoAt At oA
H = E (di0i+10i+201+3‘71+4dz+5 +d61+161+2d1+3

At
+di6] 1675 3d; 4+ refl

p
+dib11671567, 3 14fli4s + ref]

>

A

+ d1u1+161+2ut+3uz+4 + refl

+ @fl11 61,567 514t 5) + Hee., (2)

where “refl.” indicates that one should reverse the sequence
of indices in the previous term. In the quasiparticle
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language, H (2) maps a configuration ¢ to a uniform
superposition of all configurations ¢’ with a single quasi-
particle moved by one unit cell, provided N . are preserved.

The Hamiltonian (2) commutes with F, o, but nevertheless
acts nontrivially because £, has exponentially degenerate
eigenstates: for a given NV, in a system of size L, there are
only O(L?) eigenvalues, but exponentially many basis
states, corresponding to different quasiparticle positions.
Equation (2) lifts the degeneracy in this subspace and thus
makes the dynamics fully quantum. This perturbation cures
many pathological features of the FFA model that are due to
these degeneracies, such as its failure to equilibrate to the
diagonal ensemble [69].

Single-quasiparticle sectors.—We first find eigenstates
of (1) for a single & quasiparticle, |}, +) = 63,03, (0).
The Fourier transform is an eigenstate of F(4),

F)lkv) = e ), (3)

where v==1. Here, 4 controls the strength of the dispers-
ing term, and k=2zm/L for integer m, with L the system
size in unit cells. This model thus has two chiral bands
(Fig. 1). For A<1/2, all 4+ () quasiparticles have right-
(left-)ymoving group velocities, but for 1>1/2, both species
have left- and right-moving quasiparticles. The group
velocities of =+ quasiparticles are given by U(i,k:
+1—24sink. These chiral bands are characterized by a
quantized winding number v= [7 (dk/27)v} =+,
which is the invariant characterizing Thouless pumping
[6,32,33].

Bethe ansatz solution.—We now move on to multi-
particle sectors. We note, first, that in the absence of left
movers, the FFA evolution is just a trivial global translation.
In this purely right-moving sector, the dynamics of +
quasiparticles consists of hopping and hardcore nearest-
neighbor repulsion. The scattering phase shift between
particles of the same species is thus S, (k,, k) =
S_(ky, k) = S(ky, ky) = —e'k2=%1) Meanwhile, the scat-
tering between left and right movers is engineered to retain
the FFA form such that the phase shift after a collision is
S_ (ki k) =8(ky k_)=4¢® %) and no meaning is
ascribed to the order of the arguments. Higher-body
collisions factorize onto the two-body scattering processes,
ensuring integrability. For a many-body state with fixed
(N4,N_), where {k;} refer to the momenta of the +
quasiparticles, we find the following quantization condition
(see Supplemental Material [78]):

N. N_
SR — HS(Hk;) H S‘*(k]* ko)
gy m=1

n#j

eik/fL _ HS

u#/

lN'[ S (k5 k). (4)

These quantization conditions have the same form as Bethe
equations in Hamiltonian systems. Translational invariance
and the recurrence properties of the FFA model [with which
the Hamiltonian (2) commutes] impose two further con-
; . + —_
straints. We require, first, that j k 7+ > i k 7 =K, where
K=2zm/L with m is one of the allowed global momenta,
: +_ -
and second, that the relative momentum ) k7 = k7 =0,
where

2xN N, -N_-L)K
0= T 0+( + - ) . (5)
L+N_+N,
with 1 <Ny<(L+N_+N_)aninteger,unlessL+N_+N

is even, in which case Ny must be as well (see Supplemental
Material [78]). Finally, no two quasiparticles of the
same species may occupy the same momentum state.
With these constraints, the solutions (4) fully characterize
the eigenstates in a finite system, and the corresponding
quasienergy e~ of the Floquet unitary (1) reads
e=,_0 SV (k¥ + 24 cos k).

Remarkably, these equations are simple enough that they
can be solved exactly for any finite system. The set of
allowed momenta for either species v is

z(2my + N, — 1) =10

N=—T1-N, %N, (6)

with o = —v and 1 <m% <L — N, + N;. The number of
available mJi decreases with the total number of = movers

because neighboring unit cells cannot both host +’s with-
out a F between them. We also note that the quantization
condition depends on the total number and momentum of
the + quasiparticles, not on the details of their distribution.
Relatedly, (4) and (6) do not depend on A and thus also
apply to F, though in that model, the phase shift between
quasiparticles of the same species is ill-defined, as they
move in unison and never collide.

The DFFA model corrects several pathological features
of the FFA model. We show this numerically using exact
diagonalization (ED) to analyze the quasienergy level
statistics, which does not show level repulsion (Fig. 2),
consistent with integrability. We also checked using ED
that the value of the “r ratio” [37] is consistent with a
Poisson distribution for all 4 > 0.

Thermodynamics.—In the thermodynamic limit, one
defines densities of quasiparticles at a given species and
rapidity, p. (k), as well as total densities of states p'?'(k),
related via the Bethe equations

22pM(q) = 14 ny —ny, (7)

where n,. = [ dgp.(q) = N./L. These equations fol-
low from the continuum limit of (4), with the scattering
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FIG. 2. Numerical results. Quasienergy level statistics as a
function of A, for several values of N, and K at L = 9. (a) The r
ratio shows good agreement with a Poisson distribution (dashed
line) for all 4 > 0. (b) (Inset) The distribution of r for A = 1.0
does not show level repulsion, consistent with integrability. Plot
of the OTOC C(t) for L = 14 unit cells with N, =1 and
N_ =2, for (c) 4 =0, corresponding to the FFA model, and
(d) 2 =0.05, where we see that the OTOC does not “fill in”
behind the front except through the dispersion of the perturbed
quasiparticle. All data obtained from exact diagonalization.

kernels K, = (1/2zi)(d/dk)InS,, with v,/ € {+, -}
givenby K., =K__=1/2x), K. _=K_, =-1/(2n).

Starting with these equations, one can straightforwardly
construct generalized equilibrium states of this Floquet
system. We emphasize that, since the DFFA model is
integrable, its dynamics lead to nontrivial steady states that
are distinct from featureless infinite temperature states that
would be expected for generic interacting Floquet systems.
For concreteness, we focus on generalized equilibrium
states characterized by a given density of + quasiparticles
via the partition function Z=3", e -7 - but our
discussion extends naturally to arbitrary GGEs for this
model. In terms of quasiparticle densities, the partition
function reads Z~ [ ’DpeLf Sy g=Lus [ dhkpiy=L [ty Lah
where Syy is the so-called Yang-Yang entropy [79,80]
associated with the occupation of quasiparticle states.
In the thermodynamic limit, these integrals are dominated
by their saddle point, giving rise to thermodynamic
Bethe ansatz (TBA) equations analogous to Hamiltonian
integrable systems [80]. This leads to the following
equations for the occupation numbers (Fermi factors)
0,(k)=p,(k)/p (k)= (1+¢%9)~!, which turn out to be
independent of &,

14
€x = py +log (m) : (8)

Together with (7) this forms a complete characterization of
the generalized Gibbs ensemble. The simple algebraic form
of (8) resembles the high-energy limit of the TBA equations
of other integrable systems [81,82]. For 41 =0 (FFA
model), the properties of this ensemble can also be derived
by a transfer-matrix calculation [72]; these approaches give
equivalent results (see Supplemental Material [78]). These
TBA solutions allow one to probe the physics of Thouless
pumps in an interacting model even in the limit L — oo.

Hydrodynamics.—Coarse-grained dynamics in the
DFFA model can be described using the recently developed
theory of generalized hydrodynamics (GHD) [83-103].
GHD treats the system semiclassically as a soliton gas [89].
There are two species of solitons £ whose bare group
velocities 122 follow from the dispersion relation (3). When
solitons collide, each pick up a semiclassical displacement
Ax = 2z in the direction of motion (Fig. 1). Like-species
(unlike-species) collisions speed up (slow down) solitons
by one step. Collisions lead to a dressing of the velocities
[83,84,104], with the effective velocities in a state with
quasiparticle densities p ; given by

Uik = U(i,k + / d‘I(”i,k - U:t,q)p:t,q
- [ dafves= v (9)

Higher-order corrections are derived in the Supplemental
Material [78].

Operator dynamics.—The rapidity-independent scatter-
ing kernels in the DFFA model have important conse-
quences for operator spreading, which is simpler here than
in generic integrable models [72]. In the generic case, any
operator creates a “light cone” that fills in at late times: a
spatially local operator has a spread of momenta and thus of
group velocities, and the velocity dependence of the
scattering kernel implies that perturbing the velocity of
one quasiparticle will affect the trajectories of all the others.
This does not happen either in the hard rod gas or in the
DFFA model, since the scattering kernel in these models is
velocity independent and, consequently, any perturbation
that preserves N, will only affect the state of one
quasiparticle. Thus the butterfly cone, measured via the
out-of-time-order correlator [105-108] (OTOC) C(x,t) =
%|Tr{[fz i=2,6%(1)]*}| does not fill in except through the
dispersion of the perturbed quasiparticle (Fig. 2). This
property can also be seen from the coordinate Bethe ansatz:
an operator that changes the velocity of a + quasiparticle
does not alter the quantization condition for any other
quasiparticles and thus does not force a global rearrange-
ment, in contrast to the generic case.
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Conclusion.—In summary, we present and solve exactly
a Floquet model that is the first of its kind in a number of
respects. It is the first example of an interacting integrable
Floquet model that is neither smoothly deformable to
Hamiltonian dynamics [66] nor classically simulable
(FFA). Our solution of the dispersing model has provided
insight into the physics of the FFA model, which prior to
this work was not confirmed to be integrable in the Yang-
Baxter sense. The dispersing model regularizes several
pathological features of the FFA model, but nonetheless
preserves the chiral quasiparticle excitations of the FFA
model, which realize topological Thouless pumping.
Despite the complicated nature of the Hamiltonian terms,
the resulting Bethe (4) and TBA equations (8) are the
simplest of any interacting integrable model as far as we are
aware. This model shows the existence of interacting
Floquet models with stable chiral quasiparticles and sug-
gests a route to finding others, building on integrable
cellular automata [67,71,109,110].

Finally, we briefly discuss the experimental implications
of this Letter. The FFA model comprises standard cNOT and
Toffoli gates and is therefore simple to implement on
existing “noisy intermediate-scale quantum computers”
[111] based on ion traps, cold atoms, or superconducting
qubits. The Hamiltonian (2) is more challenging, although
a Trotterized version that preserves integrability may be
implemented on small gate-based quantum simulators;
transport, operator growth [112], and even level statistics
[113] have been measured in this setting. There might also
be simpler-to-realize deformations of the FFA model that
retain integrability (e.g., models that only contain the
doublon-hopping term). Exploring such deformations is
an interesting topic for future work.
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