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In this work, we demonstrate single microparticle transport in a symmetric noisy optical ratchet made
with a linear array of 20 optical potentials, where each potential is a spatially symmetric low power
(< 2.5 mW) three-dimensional trap. Both the external force FðtÞ and the depth V0iðtÞ of the optical
potentials are dynamic and change at the same frequency ν ¼ 2 Hz. The depths of the individual optical
potentials are random (uncorrelated noise) distributed around a mean value V0, hV0iðtÞi ¼ V0, while the
external force is periodic and unbiased hFðtÞi ¼ 0. The system is completely symmetric for times t ≫ 1=ν.
Directed transport is possible as a result of the symmetry being broken at times on the order of 1=ν. We find
that the direction and speed of motion (current) are coupled to the phase difference between the noise in the
optical potentials and the external periodic force.
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Transport phenomena are ubiquitous to a wide variety
of disciplines ranging from biology, chemistry, physics, and
even electronics [1–9]. In particular, directed motion of
particles has become a major research topic [10], mainly
because of its fundamental role in understanding the
functioning of natural systems, such as the movement of
motor proteins along tubulin molecules [11–13], which has
lead to novel applications ranging from microparticle
sorting [14], to the directed motion of cold [15,16] and
ultracold atoms [17], to the control of electronic transport
through semiconductor superlattices [18].
Interestingly, unidirectional motion in the micro- and

nanoscale has been achieved by means of ratchet systems,
where the movement of a particle is mediated by a fine-
tuned combination of a zero-average periodic external force
and asymmetric potentials which privilege motion in one
direction while hindering it in the opposite [19–27]. In
general, directed transport is achieved by introducing an
asymmetry (for example, in the spatial shape of the
potentials). Hence, if the asymmetric potentials in the
previous studies were changed to symmetric potentials,
directed transport would be destroyed [28], and new
approaches would have to be considered [29,30].
Among these, the simplest strategy consists of introducing
a nonzero, constant, strong tilting force to the potentials,
which drives the system out of equilibrium, thus producing
movement of the particle [31]. Another approach is to use a
weak tilting force—smaller than the one necessary to make
the particle escape the potentials—in combination with
dynamically disordered potentials [32]. Finally, the third
and most difficult way of producing directed motion is by
incorporating correlated noise, rather than white or
Brownian, to the dynamics of the particle [33].
In this work, we show numerically and experimentally

that directed motion of a single particle can be observed in a

dynamical system with a characteristic frequency νmade of
a linear array of Gaussian potentials and a periodic external
force. In particular, the time averages h…i of the external
force and the potential array result in a completely
symmetric system for times that are much longer than
the inverse of the frequency. The system is robust and can
be implemented using the simplest methods of holographic
optical tweezers.
The main components of the symmetric noisy ratchet are

as follows: (1) A linear array of N focused laser beams that
create the optical potentials [Fig. 1(a)] which can be
modeled with Gaussian potentials [34,35]

Vðx; tÞ ¼ −
XN

i¼1

V0iðtÞ exp
�
−
ðx − iLÞ2

2σ2

�
; ð1Þ

where σ is the spot size and L the interpotential separation
[Fig. 1(a)]. The depths of the potentials are random
V0iðtÞ ¼ V0 þ ϕiðtÞ, where ϕiðtÞ are uncorrelated random
Gaussian stochastic variables with hϕiðtÞi ¼ 0 so that
hV0iðtÞi ¼ V0 [Fig. 1(b)]. The standard deviation of the
noise ϕiðtÞ is set to 0.23V0 to match the experiment. The N
potentials are updated simultaneously at the same fre-
quency ν as an external force [Fig. 1(c), red dotted line
for one potential]. Hence the potentials are static during a
time τ ¼ 1=ν. (2) An external unbiased periodic force
hFðtÞi ¼ 0. FðtÞ ¼ FdΩð2πνtþ ϕ̃Þ, where ΩðtÞ describes
a zero-average periodic function, with a frequency ν and a
ϕ̃ phase shift. Here, FðtÞ is a square wave so that the force
is constant and changes sign at half the period [Fig. 1(c)].
The phase difference Δϕ is the difference between ϕ̃ and

the initial phase of the potentials which here is set to zero.
The mean depth in the potentials V0 is sufficiently large to
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hold a microparticle in a trap even under the action of FðtÞ.
In this way, there is no transport with static potentials.
The system is completely symmetric for times t ≫ τ

(hFðtÞi ¼ 0 and hV0iðtÞi ¼ V0), so the only way to get
directed transport is to use the random spatial asymmetry in
the depths of the potentials during the time τ where the
potentials are static.
Figure 1(a) shows the way directed transport is achieved:

Assuming that the particle (blue circle) is trapped by the ith
potential, the particle is periodically displaced (dotted
circles) by the external force while the depths of the
potentials are changed during a time interval τ [the exact
time defines the phase differenceΔϕ as shown in Fig. 1(c)].
If the potentials are updated at a time when the particle is
at the largest separation from its trapping potential, either
between i and iþ 1 or between i and i − 1, then it is
possible that the random change in the depths of the
potentials could pull the particle to iþ 1 or i − 1 (depend-
ing on the relative strength of the potentials). This shows
that the relative phase between the force and the noise
[Figs. 1(a) and 1(c)] in the potentials controls transport
direction and speed.
To describe the dynamics of the system, we consider the

motion of a Brownian particle under the external periodic

force FðtÞ and the linear array of optical potentials Vðx; tÞ
described previously. The Langevin equation for the
particle in the overdamped limit [36] is

_x ¼ −
1

γ
½V 0ðx; tÞ þ FðtÞ� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=γ

p
ξðtÞ: ð2Þ

Here, γ characterizes the friction of the particle immersed in
liquid, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=γ

p
ξðtÞ the thermal noise due to random

collisions with the surrounding fluid molecules. ξðtÞ stands
for a Gaussian Markov stochastic process with zero average
and unit-delta autocorrelation function, kB is the Boltzmann
constant, and T the temperature of the system.
The solution of Eq. (2) explicitly depends on the values

that the stochastic Gaussian variables ϕiðtÞ (noise in the
depths of the potentials) and ξðtÞ (Brownian) take during
the evolution of the system. Hence, the system is solved
numerically with the parameters of the experiment. Details
are in Secs. 1 and 2 of the Supplemental Material [37],
which includes Refs. [38,39].
The experiment explores the dynamics of a single micro-

particle trapped in a linear array ofN ¼ 20 optical potentials
with an interpotential separation L ¼ 2.3� 0.1 μm. The
microparticle sample is composed of silica microbeads
with a mean diameter 2R of 2.47 μm immersed in water.
The external force is realized by dragging the microscope
stage at a constant speed to get a constant force
(Fd ¼ 6πηRv; see Supplemental Material [37], Sec. 3) at
a frequency ν ¼ 2 Hz.
The linear array of optical potentials are created by

shaping the trapping laser beam with a spatial light
modulator (SLM). This is done by changing the projected
digital holograms at the same rate ν as the external force,
simultaneously updating the 20 traps. The digital holo-
grams are calculated with the simple Gershberg-Saxton
algorithm [40], randomly changing the target intensity
at the potentials, the depth V0iðtÞ. The variation in the
diffracted power to the individual traps has a standard
deviation of �23%. The mean diffracted power into all of
the traps is 37 mW (transmitted by the microscope
objective). In the case of one realization, the total power
is proportional to

P
i V0i ¼ NV0 þ

P
i ϕi, showing that

there are variations around the mean value. In the
experiment, these variations also appear during individual
realizations on the total diffracted power. However, the
average power is constant. The mean power per trap
(1.85 mW) is proportional to the mean potential depth
V0¼6.4×10−19 J∼155 kBT (T ¼ 300 K) fitted from the
dynamics of the experiment. The measured escape velocity
for different projected patterns is 49.4� 17.8 μm=s.
Here, it is worth mentioning that in contrast with the

model, where the changes in the force and the potentials
are instantaneous [Fig. 1(c)], in the experiment each time
the hologram is changed there is flickering, which results
in a lowering of a diffracted power to the trap. In our

(a)

(b)

(c)

FIG. 1. (a) Sketch of the system showing the position of the
optical traps (separated by L ¼ 2.3 μm, σ ¼ 519 nm) and the
position of a particle (blue circle) trapped by the ith trap. Once
the external rocking force FðtÞ is introduced, the trapped particle
will oscillate around the ith trap (dotted circles). (b) Linear optical
potential array with random heights V0iðt0Þ. (c) Dynamics of the
experiment: The external force is represented by the blue line
(constant during half-period), and the red line represents the
change into one of the optical potentials; the first plot is the case
for zero phase difference and the second plot is for a phase
difference of π=2.
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experiment, we found that during a hologram-switching
event the particle is essentially free for about 5 ms; this
results in a displacement of 119 nm, which is a very
small fraction (4%) of the interpotential separation L.
Furthermore, the experimental results are reasonably repro-
duced by the numerical model.
Figure 2(a) is the experimental analog of Fig. 1(c), and it

shows the displacement of the piezo stage (reference
microparticle) and the changes in the optical potentials.
The displacement speed of the stage is constant, so that the
force is constant over half a cycle like in the case of the
model [Fig. 1(c)]. The red line indicates when the SLM is
updated (see the Supplemental Material [37], Sec. 3,
Fig. 3), and this signal is obtained from a speckle pattern
that is projected into the camera. In the case of the external
force, we observe that the slope (speed) depends on the
amplitude of the stage motion. In this case, the amplitude
is 6.1� 0.3 μm and the speed is 23.8� 1.6 μm=s.
Figure 2(b) shows the displacement of the trapped particle
for a single phase difference of 1.1 rad in 37 cycles (black
lines) and the average displacement (red line). Notice that
after averaging over all the trajectories (red line), the
particle does not return to its initial position but a finite,
small distance above it. This phase-controlled movement
within one cycle is what we define as the mean displace-
ment per cycle.

To find the relation between phase and mean displace-
ment, the experiment is performed in the following way: A
particle is trapped by one of the potentials and raised to a
height of 12 μm. Then, the video of digital holograms is
projected (2 Hz) into the SLM, and we confirm that in the
absence of external force there is no transport (see
Supplemental Material [37], Fig. 4). The next step is to
pause the SLM and introduce the external force (2 Hz) of
the microscope stage to check that there is no transport with
static potentials either (see Supplemental Material [37],
Fig. 4). The transport experiment is then started with both
the SLM video and the periodic external force. The phase
difference between both signals is controlled by varying the
phase of the external force that is controlled by a function
generator (triangular wave). This is done by changing the
phase in the output of the instrument which is computer
controlled. The phase in the function generator is changed
in steps of 40 deg (∼0.70 rad). In order to avoid the particle
reaching one of the boundaries (initial and last traps), each
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FIG. 2. (a) Measured trajectory of a reference microparticle
stuck at the bottom of the microscope coverslip. The red line is
part of a speckle pattern that is used to track the update in the
SLM (dips). The phase difference is 1.1 rad. (b) Measured
trajectories of the trapped microparticle for each cycle. The red
line represents the average trajectory over 37 different realiza-
tions for a phase difference of 1.1 rad.

(a)

(b)

FIG. 3. (a) Average displacement (per cycle) of the particle as a
function of the periodic-force phase ϕ. The red round markers
correspond to 37 different realizations of the experiment. The
blue shaded region is composed of 1000 independent numerical
realizations of the experiment, showing that the measured signals
are expected within our simplified model. (b) Composite images
for phase differences of 1.8, 3.2, and 4.1 rad for a time of 19.5 s.
Each video frame is cut to a width of three pixels and each com-
posite image contains 780 frames. The video in the Supplemental
Material shows the case of negative displacement (to the left).
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phase is switched every 20 s by πrad. In this way, we start
with zero rad at the output of the function generator,
followed by π; 0.7; 0.7þ π;….
The results of our experiments are depicted in Fig. 3. The

average displacement per cycle as a function of phase
difference is plotted in Fig. 3(a). Each data point represents
the average over 37 cycles. The blue solid line corresponds
to the average displacement of the particle obtained by
numerically solving Eq. (2) with the parameters of our
experiment. Our simulations are performed by making use
of a simple finite difference algorithm (see Ref. [36] and
the Supplemental Material [37]). The shaded region of
Fig. 3(a) shows 1000 independent numerical realizations of
the experimental procedure described above, with the solid
line depicting the average of the realizations. Note that the
average displacement shows an important symmetry over
the phase difference; in particular, for a phase difference
between 0 and π, the movement of the particle follows a
positive direction, whereas for a phase difference between π
and 2π, the movement goes in the opposite direction. Note
that the experimental results are well captured by our
simplified model, showing that the particle’s motion can
indeed be controlled by properly setting the phase differ-
ence between the drag and noise signals. The experimental
data are not completely symmetric, transport is slightly
faster in the range between 0 and π, which could be a result
of a small asymmetry in the external force.
Figure 3(b) shows three different trajectories (positive,

neutral, and negative displacements) extracted from videos
with phase differences of 1.8, 3.2, and 4.1 rad. The images
are composed of slices with a width of three pixels for each
video frame. The particle center appears bright, so that the
trajectory for more than 19 s looks like a white line in the
composite image. The video in the Supplemental Material
shows a case with negative displacement (movement to
the left).
Comparing our results with most ratchet systems

[20,21,24], our implementation offers a relatively simple
way of controlling direction and speed. This system is also
quite robust as the potentials are calculated with one of the
simplest methods [40] without requiring high uniformity.
Another useful property of this ratchet is that the traps are
3D, which is not a property of all optical ratchet systems.
Other theoretical studies have proposed current reversals
based on gated ratchets controlled by the phases of two
harmonic signals [41].
In conclusion, we have presented a phase-controlled

symmetric (hV0iðtÞi ¼ V0, hFðtÞi ¼ 0) noise-enabled opti-
cal ratchet where the magnitude and direction of the current
can be adjusted by changing the phase difference between
noise and external force. Contrary to conventional knowl-
edge, our results demonstrate that particle motion in
symmetric potentials subjected to a periodic zero-average
external force can be observed and manipulated by intro-
ducing simple Gaussian white noise to the potentials.

More importantly, we have shown that the direction of
the particle’s motion can easily be controlled by changing
the relative phase between the force and noise signals.
This might help expand the scope of particle transport in
symmetric potentials and open the door to new noise-
enabled micro- and nanoscale applications.
Because of its simplicity and versatility, our experiment

constitutes a robust platform for the study of directed
motion across symmetric potentials and paves the way
toward the development of novel noise-enabled micro- and
nanoscale transport technologies.
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