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One of the unique features of non-Hermitian Hamiltonians is the non-Hermitian skin effect, namely, that
the eigenstates are exponentially localized at the boundary of the system. For open quantum systems, a
short-time evolution can often be well described by the effective non-Hermitian Hamiltonians, while long-
time dynamics calls for the Lindblad master equations, in which the Liouvillian superoperators generate
time evolution. In this Letter, we find that Liouvillian superoperators can exhibit the non-Hermitian skin
effect, and uncover its unexpected physical consequences. It is shown that the non-Hermitian skin effect
dramatically shapes the long-time dynamics, such that the damping in a class of open quantum systems is
algebraic under periodic boundary conditions but exponential under open boundary conditions. Moreover,
the non-Hermitian skin effect and non-Bloch bands cause a chiral damping with a sharp wave front. These
phenomena are beyond the effective non-Hermitian Hamiltonians; instead, they belong to the non-
Hermitian physics of full-fledged open quantum dynamics.
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Non-Hermitian Hamiltonians provide a natural frame-
work for a wide range of phenomena such as photonic
systems with loss and gain [1-5], open quantum systems
[6-16], and quasiparticles with finite lifetimes [17-21].
Recently, the interplay of non-Hermiticity and topological
phases have been attracting growing attention. Considerable
attention has been focused on non-Hermitian bulk-boundary
correspondence [22-34], new topological invariants
[24,25,27,31,35-42], generalizations of topological insula-
tors [25,43-56] and semimetals [57-67], and novel topo-
logical classifications [68—70], among other interesting
theoretical [71-81] and experimental [82—87] investigations.

One of the remarkable phenomena of non-Hermitian
systems is the non-Hermitian skin effect [24,26] (NHSE),
namely, that the majority of eigenstates of a non-Hermitian
operator are localized at boundaries, which suggests the
non-Bloch bulk-boundary correspondence [24,28] and non-
Bloch band theory based on the generalized Brillouin zone
[24,25,31,37,40]. Broader implications of NHSE have been
under investigation [25,32,33,37,58,88-99]. Very recently,
NHSE has been observed in experiments [100—102].

In open quantum systems, non-Hermiticity naturally
arises in the Lindblad master equation that governs the
time evolution of density matrix (see, e.g., Refs. [8,9]):

dp

= —ilH.pl+ > (2LpLi—{LiL,.p}) = Lp. (1)

H

where H 1is the Hamiltonian, L#’s are the Lindblad
dissipators describing quantum jumps due to coupling to
the environment, and £ is called the Liouvillian super-
operator. Before the occurrence of a jump, the short-time
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evolution follows the effective non-Hermitian Hamiltonian
Hyy = H—iY, LiL, as dp/dt = —i(Hezp — pHly)
[11,12,103].

It is generally believed that when the system size is not
too small, the effect of the boundary condition is insig-
nificant. As such, the periodic boundary condition is
commonly adopted, though the open-boundary condition
is more relevant to experiments. In this Letter, we show that
the long-time Lindblad dynamics of an open-boundary
system dramatically differ from that of a periodic-boundary
system. Furthermore, this is related to the NHSE of the
damping matrix derived from the Liouvillian. Notable
examples are found that the long-time damping is algebraic
(i.e., power law) under periodic boundary conditions while
exponential under open boundary conditions. Moreover,
NHSE implies that the damping is unidirectional, which is
dubbed the “chiral damping.” Crucially, the theory is based
on the full Liouvillian. Although H . may be expected to
play an important role, it is in fact inessential here (e.g., its
having NHSE or not does not matter).

Model—The system is illustrated in Fig. 1(a). Our
Hamiltonian H =}, h,-/-c:fcj, where ¢}, ¢; are fermion
creation and annihilation operators at site i (including
additional degrees of freedom such as spin is straightfor-
ward). We will consider single particle loss and gain,

with loss dissipators Lj, = Y, D!;c; and gain dissipators

Li=>, Dzicj', respectively. For concreteness, we take h
to be Su-Schrieffer-Heeger (SSH), namely, /;; = #; and 1,
on adjacent links. A site is also labeled as i = xs, where x
refers to the unit cell, and s = A, B refers to the sublattice.
For simplicity, let each unit cell contain a single loss and

gain dissipator (namely, y is just x):

"
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FIG. 1. (a) SSH model with staggered hopping ¢; and ¢,, with the
ovals indicating the unit cells. The Bloch Hamiltonian is
h(k) = (t; 4 t; cos k)6, + t, sinko,. The fermion loss and gain
are described by the dissipators L' and LY [Eq. (2)] in the master
equation framework. (b) A different realization of the same model.
The hopping Hamiltonian h(k) = (¢, + 1, cosk)o, + 1, sinko,
and the dissipators are L. = V7icw and LY = ych,A,
(b) is equivalent to (a) via a basis change ¢, <> ¢,. Because gain
and loss is on site, (b) is more feasible experimentally.

L,l\c =V yl/z(ch - ich)?
Li= \/ J’g/z(cj;A + iciB); (2)

in other words, D! ., =iD% p=1+/7,/2.D% ,=—iD} z=
\/74/2. We tecognized in Eq. (2) that the 6, = +1 states
are lost to or gained from the bath. A seemingly different
but essentially equivalent realization of the same model is
shown in Fig. 1(b), which can be obtained from the initial
model [Fig. 1(a)] after a basis change o, <> o,.
Accordingly, the dissipators in Fig. 1(b) are 6, = 1 states.
As the gain and loss are on site, its experimental imple-
mentation is easier. Keeping in mind that Fig. 1(b)
shares the same physics, hereafter we focus on the setup
in Fig. 1(a).

To see the evolution of the density matrix, it is
convenient to monitor the single-particle correlation
A(t) = Tr[c¢;p(t)], whose time evolution is dA,;/dt =
Tr[c]c jdp/dt]. Tt follows from Eq. (1) that (see the
Supplemental Material [104])

9O 47 Aw) - (] + My A0} + 2, (3)

where (M,),;; =3, D/g;DIgU. and (M));; = >, DL’;DL/., and
both M; and M, are Hermitian matrices. Majorana versions
of Eq. (3) appeared in Refs. [8,16,105]. We can define the

damping matrix
X =ih" —(M] +M,), (4)

which recasts Eq. (3) as

dA(1)
dt

= XA(1) + A(1)XT +2M,,. (5)

The steady state correlation A; = A(o0), to which long-
time evolution of any initial state converges, is determined
by dA,/dt = 0, or XA, + A X" +2M, = 0. In this Letter,
we are concerned mainly about the dynamics, especially
the speed of converging to the steady state; therefore, we
shall focus on the deviation A(f) = A(f) — A,, whose
evolution is dA(t)/dt = XA(t) + A(¢)X", which is readily
integrated to

A1) = eX'A(0)eX". (6)

We can write X in terms of right and left eigenvectors [106],

X = Z’ln|uRn><uLn s (7)

and express Eq. (6) as

A(r) ZZGXP[(M 25 lutga) (1t | A(0) [t ) (|- (8)

By the dissipative nature, Re(4,) <0 always holds true.
The Liouvillian gap A = min[2Re(—4,,)] is crucial for the
long-time dynamics. A finite gap implies exponential
convergence towards the steady state, while a vanishing
gap implies algebraic convergence [107].

Periodic chain.—Let us study the periodic boundary
chain, for which the momentum space is more convenient.
It can be readily found that /1(k)=(t,4-t,cosk)o+t,sinko,
and

M) =2 (1 +0). My(K) =2 (1=0y).  (9)
These M (k) matrices are k independent because the gain
and loss dissipators are intracell. The Fourier transforma-
tion of X is X(k) = ih"(—k) —M](—k)—M,(k) (the
minus sign in —k comes from matrix transposition); there-
fore, the damping matrix in momentum space reads

X(k) =1i|(t; + tycosk)o, + <t2 sink — ig)Q} —gl,

(10)

where y =y, +y,. If we take the realization in Fig. 1(b)
instead of Fig. 1(a), the only modification to X (k) is a basis
change 6, — o, in Eq. (10), with the physics unchanged.
Diagonalizing X (k), we find that the Liouvillian gap A = 0
for t; < t,, while the gap opens for #; > t, [Fig. 2(b)]. The
damping rate is therefore expected to be algebraic and
exponential in each case, respectively. To confirm this, we
numerically calculate the site-averaged fermion number
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FIG. 2. (a) The damping of the fermion number towards the

steady state of a periodic boundary chain with length L = 150
(unit cell). The damping is algebraic for cases A, B with #; < 15,
while exponential for C, D with t; > t,. The initial state is the
completely filled state [],  ci,|0). (b) The eigenvalues of the
damping matrix X. Blue: periodic boundary; Red: open boun-
dary. The Liouvillian gap of the periodic-boundary chain van-
ishes for A and B, while it is nonzero for C and D. For the open-
boundary chain, the Liouvillian gap is nonzero in all four cases.
This drastic spectral distinction between open and periodic
boundary comes from the NHSE (see text).

deviation from the steady state, defined as 7i(t) =
VYo 2(1) /L, where fi,(t) = n,(t) — n,(c0) with n,(t) =
na(t) + nep(t), n = Ay s being the fermion number at
site xs. The results are consistent with the vanishing
(nonzero) gap in the #; <1, (t; > t,) case [Fig. 2(a)].

Although our focus here is the damping dynamics,
we also give the steady state. In fact, our M; and M,
satisfy MIT + M, = M,y/y, which guarantees that A, =
(74/7) o121 is the steady state solution. It is independent
of boundary conditions.

Now we show the direct relation between the algebraic
damping and the vanishing gap of X. The eigenvalues of
X(k) are

(k) =—y/2+ i\/(t% + 13+ 2t tycosk —y?/4) —ityysink.
(11)

Let us consider ¢, = 1, =t for concreteness (case A in
Fig. 2), then A_(x) = 0 and the expansion in sk=k —nx
reads

2

A_(7 + k) = —itySk — 4—0 (5k)*. (12)
4

Now Eq. (7) becomes X = > ; 1 Au(k)|ttgra) (U11ql, and

Eq. (8) reads

Afr) = Oy ) (gl AO) o) (e |-

kk' a0
(13)

For the initial state with translational symmetry, we have
(ULkal A(O)|urpew) = Opp (ULral A(O)|uLsy). The long-time
behavior of A(7) is dominated by the & = & = — sector,
which provides a decay factor > ;. exp (2Re[A_ (7 +6k)]r)~
[d(k)exp[—(13/2y)(6k)*t]~t~1/4. Similarly, for ¢, < t,
we have A(t) ~ t71/2,

Chiral damping.—Now we turn to the open boundary
chain. Although the physical interpretation is quite differ-
ent, our X matrix resembles the non-Hermitian SSH
Hamiltonian [24,39], as can be appreciated from
Eq. (10). Remarkably, all the eigenstates of X are expo-
nentially localized at the boundary (i.e., NHSE [24]). As
such, the eigenvalues of open boundary X cannot be
obtained from X(k) with real-valued k; instead, we have
to take complex-valued wave vectors k -+ ix. In other
words, the usual Bloch phase factor e’* living in the unit
circle is replaced by exp[i(k + ix)] inhabiting a generalized
Brillouin zone [24], whose shape can be precisely calcu-
lated in the non-Bloch band theory [24,25,31,37,40].

From the non-Bloch band theory [24], we find that
k= —In\/|(t; +7/2)/(t; —/2)], and that the eigenval-
ues of X of an open boundary chain are 1, (k + ix), where
Ay are the X(k) eigenvalues given in Eq. (11). We can
readily check that, for |y| < 2|t,],

Ay (k + ix) = —gi iE(K), (14)

where E(k) =1\/13+ 15— (y*/4) + 2t,\/13 — (y*/4) cosk,
which is real. We have also numerically diagonalized X
for a long open chain [red dots in Fig. 2(b)], which confirms
Eq. (14). An immediate feature of Eq. (14) is that the real
part is a constant, —y/2, which is consistent with the
numerical spectrums [Fig. 2(b)]. We note that the analytic
results based on the generalized Brillouin zone produce the
continuum bands only, and the isolated topological edge
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FIG. 3. (a) The particle number damping of a periodic boundary
chain (solid curve) and open-boundary chains for several chain
length L. The long-time damping of a periodic chain follows a
power law, while the open boundary chain follows an exponential
law after an initial power law stage. (b) The site-resolved damping.
The left end (x = 1) enters the exponential stage from the very
beginning, followed sequentially by other sites. For both (a) and
(b), the initial state is the completely filled state [], , cis|0),
therefore, A(0) the identity matrix Iy ,op. 1 =1 =1,
Yg=v:=02.

modes [Fig. 2(b), A and B panels] are not contained in
Eq. (14), though they can be inferred from the non-Bloch
bulk-boundary correspondence [24,28]. Here, we focus on
bulk dynamics, and these topological edge modes do not
play important roles [108].

It follows from Eq. (14) that the Liouvillian gap A = y;
therefore, we expect an exponential long-time damping of
A(t). This behavior is confirmed by numerical simulation
[Fig. 3(a)]. Before entering the exponential stage, there is an
initial period of algebraic damping whose duration grows
with chain length L [Fig. 3(a)]. To better understand this
feature, we plot the damping in each unit cell [Fig. 3(b)]. We
find that the left end (x = 1) enters the exponential damping
immediately, and other sites enter the exponential stage
sequentially, according to their distances to the left end. As
such, there is a “damping wave front” traveling from the left
to right. This is dubbed a chiral damping, which can be
intuitively related to the fact that all eigenstates of X are
localized at the right end [24].

More intuitively, the damping of 71,(¢) = n(t) — n,(o0)
is shown in Fig. 4(a). In the periodic boundary chain it
follows a slow power law. In the open boundary chain, a
right-moving wave front is seen. After the wave front

(a) model I: skin effect

chiral

periodic

0 30 X 60

(b) model II: no skin effect

non-chiral

periodic

30 x 60 ‘ 30 x 60

FIG. 4. Time evolution of i1, (¢) = n,(t) — n,(c0), which shows
damping of particle number n,.(7) towards the steady state.
(a) 1.(t) of the main model with dissipators given by Eq. (2)
(referred to as model I). Left: periodic boundary; Right: open
boundary. The chiral damping is clearly seen in the open
boundary case. The dark region corresponds to the exponential
damping stage seen in Fig. 3. (b) 7i.(#) of model II, whose
damping matrix X [Eq. (15)] has no NHSE. The Liouvillian gap
is nonzero and the same for periodic and open boundary chains.
Common parameters: 1} =1, = 1,7, =y; = 0.2.

passes by x, the algebraically decaying 7,(t) enters the
exponential decay stage and rapidly diminishes.

The wave front can be understood as follows. According
to Eq. (6), the damping of A(t) is determined by the
evolution under exp(X7), which is just the evolution under
exp(—yt/2) exp(—iHggyt), where Hggy is the non-
Hermitian SSH Hamiltonian [24] (with an unimportant sign
difference). Now the propagator (xs|exp(—iHgsy?)|x's")
can be decomposed as propagation of various momentum
modes with velocity v, = JE/Jk. Because of the presence
of an imaginary part k in the momentum, propagation
from x’ to x acquires an exp|—«(x — x’)] factor. If this
factor can compensate exp(—yt/2), exponential damping
can be evaded, giving way to a power law damping. For
simplicity we take y small, so that x & —y/2t,; therefore,
exp[—«x(x — x')] ~ exp[vi(y/2t,)t] and the damping of
propagation from x' to x is exp[(—y/2 + vy/2t,)t] for
the k mode. By a straightforward calculation, we have
max(v;) =t, (fort; > ty)or\/|i —y* /4| = 1, (fort; < 1,).
Let us consider 7; <, first. When x > max(v;)t, the
propagation from x’ = x — max ()t to x carries a factor
exp{[—y/2+max(v;)y/2t,|t} = 1; while for x < max(vy)t,
we need the nonexistent x’ = x — max(v; )¢ < 0; therefore,
compensation is impossible and we have exponential damp-
ing. This indicates a wave front at x = max(v;)¢. For
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t; = t, = 1, we have max(v;) = 1, which is consistent with
the wave front velocity (=1) in Fig. 4(a).

As a comparison, we introduce the model II (the model
studied so far is referred to as “model I”’) that differs from
model Tonly in LY, whichisnow L{ = /(y,/2)(cl, —icly)
[compare it with Eq. (2)]. The damping matrix is

X(k)=1i|(t; + trcosk)o, + <t2 sink — ,'”;}’9> J}} _gl’

(15)

which has no NHSE when y; = y,. Accordingly, the open
and periodic boundary chains have the same Liouvillian gap,
and chiral damping is absent [Fig. 4(b)].

In realistic systems, there may be disorders, fluctuations
of parameters, and other imperfections. Fortunately, the
main results here are based on the presence of NHSE,
which is a quite robust phenomenon unchanged by modest
imperfections. As such, it is expected that our predictions
are robust and observable.

Final remarks.—(1) The chiral damping originates from
the NHSE of the damping matrix X rather than the effective
non-Hermitian Hamiltonian. Unlike the damping matrix, the
effective non-Hermitian Hamiltonian describes short time
evolution. It is found to be Hey = ) c;(heff)ijcj —iy,L,
where h.y, written in momentum space, iS hgy(k) =
(tl +t2008k)6x+{IZSink_i[(YI_Y;])/Z]}Gy_i{[(YZ_yg)/z]}I'
For y, =y, heyr has no NHSE, though X has. Although
damping matrices with NHSE can arise quite naturally (e.g.,
in Fig. 1), none of the previous models (e.g., Ref. [111]) we
have checked has NHSE.

(i1) The periodic-open contrast between the slow alge-
braic and fast exponential damping has important impli-
cations for experimental preparation of steady states (e.g.,
in cold atom systems). In the presence of NHSE, approach-
ing the steady states in open-boundary systems can be
much faster than estimations based on periodic boundary
condition.

(iii) It is interesting to investigate other rich aspects of
non-Hermitian physics such as PT symmetry breaking
[112] in this platform (Here, we have focused on the cases
that the open-boundary iX is essentially PT symmetric,
meaning that the real parts of X eigenvalues are constant).

(iv) When fermion-fermion interactions are included,
higher-order correlation functions are coupled to the two-
point ones, and approximations (such as truncations) are
called for. Moreover, the steady states can be multiple
[113,114], in which case the damping matrix depends on
the steady state approached, leading to even richer chiral
damping behaviors. These possibilities will be left for
future studies.

This work is supported by NSFC (Grant No. 11674189).
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