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Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations.
We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF)
essentially eliminating the noise of the bare random motion. The measured VACF reveals persistent
anti-correlations manifested by a negative algebraic power-law tail ~>/2 at all densities. At small packing
fractions the simulations fully agree with the analytic low-density prediction, yet the amplitude of the tail
becomes dramatically suppressed as the packing fraction is increased. The mode-coupling theory of
the glass transition provides a qualitative explanation for the strong variation in terms of the static
compressibility as well as the slowing down of the structural relaxation.
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Introduction.—In a fluid the velocity autocorrelation
function (VACF) in equilibrium encodes the self-diffusion
coefficient as its time-integral, similar Green-Kubo rela-
tions exist for all transport coefficients such as viscosity or
heat conductivity [1]. For underlying Newtonian dynamics
it is well established since the late 1960s by the pioneering
simulations of Alder and Wainwright [2], exact theoretical
results [3,4], and experiments [5-8] that the VACF and
other relevant correlation functions display an algebraic
power-law decay r~3/? in 3D. Such tails then imply a non-
analytic behavior for the frequency-dependent transport
coefficients. The origin of these persistent correlations is
traced back to the slow diffusion of conserved transverse
momentum [1,2,9,10]. Similar tails also arise due to the
presence of boundaries [6,11,12] or in the presence of
disorder [13—15] or even driven granular systems [16].

For a colloidal suspension, velocity is not an observable
anymore, rather it fluctuates without bounds, momentum is
lost incessantly due to friction and gained by thermal noise.
Nevertheless, a VACF Z(t) can be defined formally by
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thereby extending the connection with the mean-square
displacement also to the colloidal case. Recently, there has
been experimental progress to monitor with high precision
the VACF of an isolated colloid in a solvent held by an
optical trap [5-8] and confirm that the coupling to the
solvent gives rise to long-time tails as above and colored
noise as predicted theoretically [17,18].
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In Brownian dynamics (BD) the solvent is treated only
implicitly by Gaussian white noise and friction, corre-
spondingly these hydrodynamic tails due to momentum
conservation do not occur. Yet, exact low-density ex-
pansions [19-21] developed in the early 1980s of the
many-body Smoluchowski equation in 3D predict a similar
long-time behavior for the VACEF, although more rapidly
decaying +~>/? and with negative prefactor. The tails arise
due to particle conservation and reflect the repeated
encounters with the same scatterer. Roughly speaking,
the particle “remembers” that a second colloid is blocking
the way in the relative motion, the constraint fading away
only slowly by diffusion. Generally, these tails appear as a
universal feature of strongly interacting particle systems
lacking momentum conservation. In contrast to the hydro-
dynamic tails, there appears to be only rudimentary data
analysis [22] of BD simulation results to corroborate the
persistent tails. The difficulty in obtaining accurate results
in BD simulations is that the mean-square displacement is
dominated by the white noise keeping the dynamics in
equilibrium. For dilute systems the interactions leading to
deviations from conventional diffusion are rare events and
get buried completely in the noise. For higher packing
fractions there is a significant suppression of the diffusive
motion, yet the persistent tails (if they prevail beyond the low-
density regime) are again hard to extract from noisy data.

In this Letter we present BD simulation data for the VACF
over several orders of magnitude in time and amplitude,
thereby confirming the existence of such long-time tails
for the first time. The key ingredient is an adaption of an
algorithm originally introduced by Frenkel [13] for a single
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particle on a lattice. At the lowest packing fractions ¢ the data
are fully described by the low-density expansion, in particu-
lar we reproduce the short-time divergence as well as the
predicted long-time tail. We show that the mode-coupling
theory (MCT) of the glass transition for colloids also yields
a long-time tail provided the long-wavelength dynamics is
properly resolved. The trends in the amplitude of the tail in
the simulation are rationalized within MCT. Furthermore, we
elaborate the MCT prediction for the VACF in the vicinity of
the glass transition.

Model and simulation.—To unravel the VACF in detail,
we investigate a hard-sphere colloidal fluid with particles of
identical diameters ¢ and short-time diffusion coefficient
D, at packing fraction ¢ = no’z/6 [1]. Correspondingly,
1o = 6/ Dy sets the basic unit of time, Z(7)o6?/Dj} is the
dimensionless VACF. We rely on event-driven Brownian
dynamics simulations [23-26] for 1000 particles using a
fixed Brownian time step and evolve the particles ballis-
tically including collisions.

Yet, for low densities most of the time no collisions occur
and the dynamics is dominated by the noise of the free
Brownian motion. Motivated by Frenkel [13], we propose
a novel method, which generates two trajectories for an
identical noise history, one with collisions and another for
free Brownian motion ignoring interactions. Accordingly,
we split the total displacement of a particle into two
contributions

AR(7) = AR, (1) + R (1), 2)

where AR (7) represents the random displacement of the
noninteracting trajectory. The difference SR (¢) is then the
collision-induced displacement. Then the mean-square
displacement evaluates to

(AR(1)?) = 6Dyt — (5R(1)?) + 2(AR(r) - 5R(1)).  (3)

The mean-square displacement (MSD) is evaluated for
packing fractions ranging from the dilute regime, ¢ =
0.005, to just below the freezing transition, ¢ = 0.48, see
Fig. 1. Both the short-time diffusive motion (AR(7)?) =
6Dyt, t — 0, as well as the long-time diffusion (AR (¢)?) =
6D, t — oo is properly resolved. From the data we
extract the long-time self-diffusion coefficient D) and
observe a slowing down by a factor of ~7 with respect to
the free motion. The crossover regime extends over two
decades for the highest densities but appears to be a
featureless smooth interpolation.

Clearly, for low densities, the correction terms become
small relative to the bare diffusion term by construction.
Yet, the simulations reveal that the cross-correlation term
2(AR(¢) - 5R(1)) in the MSD is at least by two orders of
magnitude smaller than the correction term (SR (7)?), see
Fig. 1(b). We have checked that this hierarchy of contri-
butions persists to all densities. This observation suggests
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FIG. 1. (a) Mean-square displacement (AR(#)?) of monodis-

perse Brownian hard spheres for various packing fractions ¢.
Inset: Long-time diffusion coefficients D'*) vs packing fraction.
(b) Each term in Eq. (3) for packing fractions ¢ = 0.005 (solid
lines) and ¢ = 0.25 (dashed lines).

that we can ignore the cross-correlation completely. Then
the collision-induced mean-square displacement captures
the suppression of diffusion, reflecting that interaction can
only slow down the MSD.

Upon taking derivatives in Eq. (3), the bare diffusion
term drops out for #> 0 while it formally yields a
contribution 6D(5(¢) at the time origin. The remaining
terms can be differentiated numerically and yield high-
accuracy data for the VACF. Note that in the low-density
regime SR (7) evaluates to zero most of the time, since few
collisions occur. Using the observation that the cross-
correlation can be ignored, a noise suppression by more
than two orders of magnitude is achieved at low densities,
see Supplemental Material [27].

The computed VACF reveal nontrivial correlations
beyond the crossover regime, see Fig. 2. Our data cover
five decades in time and more than five orders of magnitude
in signal. The data clearly display an anti-correlated long-
time tail
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FIG. 2. Log-log plot of the reduced VACF of monodisperse
Brownian hard spheres for increasing packing fraction ¢.
Symbols represent simulation data. The black solid line is the
exact low-density expansion, Eq. (5). The colored dashed lines
are fits to the power-law tails. The dashed black line labeled ¢=>/2
is added as guide to the eye. Inset: Prefactor of the tail vs packing
fraction.

Z(t) ~ _(pB((p)’Z—z% (i) s e @

for all packing fractions with the anticipated exponent
—5/2 and dimensionless prefactor @B(¢). Since a non-
trivial VACF arises only in the interacting system, we have
included ¢ explicitly in the prefactor. Our simulation results
show that B(¢ — 0) ~0.14 saturates for small packing
fractions. For the lowest densities we compare to the exact
analytical results [19-21]

2
Z() = —8(p% { \/222; — cos(4t/10)[1 — 28(v/8t/7t0)]
+ sin(4t/1y)[1 = 2C(\/ 8t/ xty)] } (5)

for the first-order in the low-density expansion. Here S(-)
and C(-) denote the Fresnel integrals [34]. Our data nicely
follow the theoretical prediction for ¢ < 0.01, in particular,
they exhibit the long-time tail with exact prefactor
B(p — 0) = 3/(8v/2x). For larger packing fractions, the
prefactor B(g) displays a strong density dependence
beyond the low-density prediction, Fig. 2 (Inset). We find
that the amplitude is suppressed by a factor of ~110 upon
approaching the freezing transition.

All simulation data also display a divergent short-time
behavior Z () ~ —t~1/2, t — 0, which is a peculiarity of the
hard-sphere interaction [35,36]; this discussion is deferred
to the Supplemental Material [27].

Mode-coupling theory.—Numerical solutions of the
colloidal MCT equations [37,38] for the self-motion and,

in particular the MSD, have been developed earlier [39] and
successfully compared to experiments [40—43] and simu-
lations [44]. Thus, in principle the VACF can be obtained
by taking derivatives as in Eq. (1). Yet, so far MCT
equations relied on equidistant grids in wave number space
and cannot properly resolve long-wavelength phenomena
arising from a continuum of wave numbers.

Here we rely on the Zwanzig-Mori procedure [37,45,46]
for an exact equation of motion for the VACF in terms of
the irreducible memory kernel £*) () (the autocorrelation
function of the fluctuating force with projected dynamics)

Z(1) + DLV (1) + Doff? / (= 1)Z()dr =0,
0

(6)

for + > 0. Within MCT [38] the memory kernel is con-
nected to the self-intermediate scattering functions of the
collective S(k, ) and self-motion S*)(k, ) by an integral
over all wave numbers

L (1) = é / " dkkt e (k)2S(k, 1)SW (k. 1), (7)
0

where c(k) is the direct correlation function [1]. The
intermediate scattering functions S(k, ), S (k,¢) are
required as input for the memory kernel ¢(*)(z). Then
the VACF follows by a numerical solution of Eq. (6).
We solve numerically the standard MCT equations, yet to
resolve the long-wavelength dynamics, we rely on a grid
with logarithmic spacing, see Supplemental Material [27]
for details.

The numerical results for the VACF within MCT display
a long-time tail for all packing fractions, see Fig. 3. It is
well-known that MCT overestimates the slowing-down or
the structural relaxation. For comparison with the simu-
lation results, the packing fractions in MCT have been
chosen to match the suppression of diffusion obtained from
simulation results. The overall shape of the VACF com-
pares favorably to the simulation results, in particular, we
reproduce the strong density dependence of the prefactor of
the long-time tail. Nevertheless, it appears that the sup-
pression of the tail is even more drastic in MCT than in
simulations, see the inset of Fig. 3. The MCT results show a
similar short-time divergence ¢~/ for t — 0 as the sim-
ulation data and the exact low-density result.

To gain further insight into how MCT encodes the tail we
analyze the behavior of the equations analytically for low
densities and for long and short times. In the low-density
regime c(k) + 4zx[sin(ke) — ko cos(ko)]/ k>, the force ker-
nel ¢©)(t), Eq. (7), simplifies and reproduces the weak-
coupling approximation [47-50] (essentially second order
perturbation in the interaction). Here the intermediate scat-
tering functions have to be evaluated for the noninteracting
system S(k, t) = exp(=Dok*t), S©) (k, t) > exp(=Dok>t).
Then, for low densities one finds Z(¢) = —D2*¢")(¢) from
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FIG. 3. Mode-coupling-theory results for the reduced VACF

Z(1)/ e for packing fraction ¢ with Percus-Yevick closure such
that the diffusion coefficients match the simulation results. The
short-dashed line indicates a power law ~5/% and serves as a
guide to the eye. The long-dashed line corresponds to the weak-
coupling approximation (w.c.a.) and is virtually on top of the
MCT result for the lowest packing fraction. Inset: Prefactor of the
tail vs packing fraction.

Eq. (6) for all times. The analytical result of the weak-
coupling approximation is included in Fig. 3 and coincides
with the numerical MCT solution for ¢ < 0.005.
Interestingly, for the rather low packing fraction ¢ = 0.10,
MCTyields already a long-time tail in Z(7) /¢ suppressed by
a factor of 5, while in our simulations, Z(¢) /¢ is suppressed
by a factor of 4.

Mode-coupling theory provides an explanation for the
origin of the tails similar to the classic hydrodynamic tails
[3,4], which are due to transverse momentum conservation.
In our case the coupling of the collective and self-
intermediate scattering functions in the force, Eq. (7),
yields a slowly decaying contribution for long wavelengths.
For long times the integral is dominated by small wave
numbers where the intermediate scattering functions
S(k,t)=S(0)exp[-Dok*t/S(0)], S (k,t)~exp(—D)k>t)
approach diffusive motion. Here D) is again the long-
time self-diffusion coefficient and D,/S(0) the collective
diffusion coefficient (which is time-independent as a
consequence of Newton’s third law [48]). Then the
MCT approximation yields a long-time tail () ~ r=>/2
with a positive prefactor. The long-time behavior of the
VACF Z(t) ~ —(D®)?2$2¢©) (1) follows from the equation
of motion, Eq. (6), using Tauber theorems. Collecting the
prefactors yields the asymptotic long-time behavior for
MCT:

5(0)nc(0)?/167%> 52

0= =00 b0 by /s(0)

~(DV)y (8)

In particular, this yields a prediction for the low-density
behavior with dimensionless amplitude B(¢) = (1/6+/2x)

consistent with the weak-coupling result [48]. Thus, the
amplitude in weak-coupling is by a factor of 4/9 smaller
than the exact low-density expansion due to repeated
encounters with the same scatterer.

It is interesting to ask how the long-time anomaly
evolves with increasing density. At moderate packing
fractions the fluid is barely compressible, S(0) < 1 (while
nc(0) =1-1/S(0) ~ —1/5(0) via the Ornstein-Zernike
relation [1]), hence the self-diffusion coefficient can be
ignored in the denominator of Eq. (8) and the prefactor
displays a strong ~S(0)3/?> dependence by mere compress-
ibility effects. Upon changing the packing fraction from
¢ = 0.005 to ¢ = 0.40 the static structure factor S(0) is
suppressed by a factor of 24. Approaching the glass
transition, the self-diffusion coefficient D) singularly
goes to zero such that the tail in Eq. (8) becomes even
more suppressed. At the same time the structural relaxation
diverges and an intermediate window between the short-
time anomaly and the long-time tail should open. Currently
it appears to be unfeasible to test these predictions by
simulations.

Summary and conclusion.—We have measured the
VACF of an interacting colloidal system in Brownian
dynamics simulations and observed an anti-correlated
algebraic decay for long times. These underlying persistent
correlations are masked in the MSD since the diffusive
increase usually dominates. Therefore we have elaborated a
novel algorithm that is sensitive only to the collisions,
thereby enhancing the signal-to-noise ratio at least by an
order of magnitude. The amplitude of the tail decreases by
several orders of magnitude as the packing fraction is
increased, which is qualitatively reproduced by MCT. The
origin of the tail is also rationalized by MCT as a result of
coupling of two slow diffusive modes.

While the low-density expansion is valid only up to
packing fractions ¢ < 0.01, MCT provides a prediction for
all densities, in particular, it predicts the strong suppression
of the amplitude by static compressibility effects as well as
by the slowing down of self-diffusion. MCT also general-
izes the weak-coupling approximation where the direct
correlation function is replaced by the bare interaction
potential, (k) +— —pu(k). This replacement arises also in a
factorization of Gaussian fluctuations [51,52] but can be
avoided in diagrammatic approaches [53]. Generally, the
tails should also be present in modified MCT approaches
[54-60]. Similar persistent correlations are anticipated also
for the time-dependent stress-stress correlation functions,
which determines the frequency-dependent shear modulus
also encoded in the MCT approach.

In Brownian dynamics the solvent exerts friction only on
the single-colloid level while hydrodynamic interactions
(HI) can be accounted for in Stokesian dynamics simu-
lations [61]. The low-density prediction [19-21] has been
generalized to incorporate HI and display the same long-
time tail 1>/, albeit with a somewhat corrected prefactor
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[62]. Similarly, MCT including HI [49,50] merely modifies
the vertex thereby affecting only the prefactor of the tail.
For high densities HI are believed not to be crucial to
understand the slow structural relaxation [63]. The tail
appears also in the case of quenched disorder [55,64], such
as in the Lorentz gas explored by a Brownian tracer as
predicted in a low-density expansion [65] and was con-
firmed in Brownian dynamics simulations in 2D [66].
Therefore, one anticipates that the emergence of the tail
should be a universal feature for any dynamics conserving
only the particle number [67].

Noise-suppression algorithms relying on identical noise
histories have been introduced before, mainly in non-
equilibrium Brownian dynamics [68,69]. There, the equi-
librium fluctuations are subtracted to enhance the signal for
the average response for small driving which otherwise is
dominated by fluctuations. The method proposed in our
Letter is somewhat different, rather it addresses the inter-
actions of the particles and remains applicable even at long
times.

Our method of noise suppression by decomposing the
displacements into a noninteracting contribution and a
collision-induced one is not restricted to hard spheres
(see Supplemental Material [27] for the simulation results
for soft spheres) and should apply also in the case of
confinement such as porous media [55,64]. Similarly, the
strategy should be applicable also beyond the mean-square
displacement upon introducing covariances of fluctuating
intermediate scattering functions, similar to the measures of
dynamic heterogeneities in glassy relaxations [70-73].
Then, subtle dynamical correlations in Brownian systems
that are usually covered by the random fluctuations of the
noninteracting system become accessible in simulations.
Finally, nonequilibrium simulation setups to probe the non-
linear response should also be feasible with the noise-
suppression algorithm.
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