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We propose a new mechanism for the thermal Hall effect in exchange spin-wave systems, which is
induced by the magnon-phonon interaction. Using symmetry arguments, we first show that this effect is
quite general, and exists whenever the mirror symmetry in the direction of the magnetization is broken.
We then demonstrate our result in a collinear ferromagnet on a square lattice, with perpendicular easy-axis
anisotropy and Dzyaloshinskii-Moriya interaction from mirror symmetry breaking. We show that the
thermal Hall conductivity is controlled by the resonant contribution from the anticrossing points between
the magnon and phonon branches, and estimate its size to be comparable to that of the magnon-mediated
thermal Hall effect.
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The spin-lattice interaction in solids is responsible for a
wide spectrum of cross-correlated phenomena. A well-
known example is the coupling between dielectric and
magnetic order in multiferroics [1–3]. It can also manifest
in the dynamics of elementary excitations such as magnons
and phonons, in the form of magnon-phonon interaction.
For example, it has been demonstrated that magnons that
couple to optical phonons can be launched by an electric
field [4,5], paving the way to the electric generation of
magnon spin current [6]. On the other hand, the dynamics
of phonons can be modified by the magnon-phonon
interaction as well, as in the case of nonreciprocal sound
propagations observed in Cu2OSeO3 with an applied
magnetic field [7].
Another scenario in which the magnon-phonon inter-

action is expected to play a significant role is the thermal
Hall effect. In a magnetic insulator, the heat current can be
carried by either magnons or phonons. Thus, the thermal
Hall effect can be used as an effective probe of these
charge-neutral excitations. Indeed, thermal Hall effects
attributed to magnons [8–11] and phonons [12–15] have
been reported. Theoretical explanations have so far
assumed that the low-energy excitations can be described
by independent magnons or phonons [16–23]. However, if
their interaction is strong, considering the magnon-phonon
hybrid as a whole is more appropriate. Recently, Takahashi
and Nagaosa have studied the magnon-phonon interaction
arising from long-range dipolar couplings [24]. However,
the consequence of the magnon-phonon interaction from
short-range couplings (such as symmetric or antisymmetric
exchange) on the thermal Hall effect is yet to be explored.
In this Letter we investigate the effect of the magnon-

phonon interaction on the thermal Hall effect. Using
symmetry arguments, we show that the magnon-phonon
interaction can induce a thermal Hall effect whenever the

mirror symmetry in the direction of the magnetization is
broken. In the limit of strong magnetic anisotropy, this
effect can be understood as a phonon Hall effect, driven by
an effective magnetic field in the phonon sector induced by
the magnon-phonon interaction. In the more general case
where the magnons and phonons are close in energy, we
have developed a theory to treat both excitations on an
equal footing. We demonstrate our theory in a collinear
ferromagnet on a square lattice, with perpendicular easy-
axis anisotropy and Dzyaloshinskii-Moriya (DM) interac-
tion from mirror symmetry breaking (Fig. 1). In this model,
the thermal Hall effect is entirely due to the magnon-
phonon interaction. We find that the thermal Hall conduc-
tivity is controlled by the resonant contribution from the
anticrossing points between the magnon and phonon
branches, and estimate its size to be comparable to that
of the magnon-mediated thermal Hall effect. Our result
sheds new light on the dynamical aspect of the spin-lattice
interaction, and may find applications in the emerging field
of spin caloritronics [25].
Symmetry consideration.—We begin our discussion by

analyzing the symmetry of a magnon-phonon coupled
system. Consider a two-dimensional (2D) spin system
described by the Hamiltonian

Hs ¼ −J
X
hi;ji

si · sj −
K
2

X
i

s2iz þ
X
hi;ji

Dij · ðsi × sjÞ; ð1Þ

where J > 0 represents the nearest-neighbor ferromagnetic
exchange, and K > 0 is the perpendicular easy-axis
anisotropy. The third term describes the DM interaction
due to the out-of-plane mirror symmetry breaking [26,27].
Here Dij ¼ DR̂ij × ẑ, with D being the strength of the DM
interaction, and R̂ij ≡ ðRi − RjÞ=ðjRi − RjjÞ is the bond
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direction from site j to site i. The direction of Dij is in
plane and perpendicular to the bond direction, as shown
in Fig. 1(b). We restrict our discussion to D <

ffiffiffiffiffiffiffi
JK

p
=2

such that the ground state remains a collinear ferromag-
net [28,29].
The spin-wave Hamiltonian can be obtained by expand-

ing the spin operator in Eq. (1) around its ground-state
expectation value, i.e., δsi ¼ si − Sẑ. To the lowest order,
the linearized spin-wave Hamiltonian reads

Hsw ¼ −J
X
hi;ji

δsi⊥ · δsj⊥ − ðJζ þ KÞS
X
i

δsiz; ð2Þ

where ζ is the coordination number. Note that the DM
interaction is absent. This can be seen by expanding the
DM interaction:

HDMI ¼ DS
X
hi;ji

R̂ij · ðδsi − δsjÞ þOðδs3Þ: ð3Þ

After summing over all lattice sites, the total DM inter-
action vanishes within the linear spin-wave theory. This is a
general consequence of the DM vector Dij being
perpendicular to the magnetization. If Dij is parallel to
the magnetization, then the DM interaction explicitly enters
into the spin-wave Hamiltonian and, as shown in previous
work, gives rise to a thermal Hall effect carried by magnons
[8,10,16–18].
Since the DM interaction is absent in the spin-wave

Hamiltonian, the magnon subsystem alone does not exhibit
the thermal Hall effect. This can also be understood by the

following symmetry consideration: The thermal Hall effect
is described by jQ ¼ αxyẑ × ∇T, where jQ is the heat
current, ∇T is the temperature gradient, and αxy is the
thermal Hall conductivity. Even though the spin-wave
Hamiltonian in Eq. (2) breaks the time-reversal symmetry,
it remains invariant under the combined time reversal (T )
and spin rotation (cx) by 180° around the x axis (or any in-
plane axis). Since jQ is odd and ∇T is even under TCx, the
existence of the T Cx symmetry forbids the thermal Hall
effect. This is reminiscent of a well-known fact about the
anomalous Hall effect: it vanishes in a uniform ferromagnet
in the absence of the spin-orbit interaction [30].
For the phonon part, we consider a simple coupled-

oscillator model described by the Hamiltonian

Hph ¼
X
i

p2i
2M

þ 1

2

X
i;j;α;β

uαiΦ
αβ
ij u

β
j ; ð4Þ

where M is the ion mass, ui ≡ Ri − R0
i is the displacement

of the i th ion from its equilibrium position R0
i , pi ¼ _ui

is the canonical momentum conjugate to ui, and Φαβ
ij is

the dynamical matrix describing inter-ion interactions.
Obviously, due to the presence of time-reversal symmetry,
the phonon subsystem alone does not exhibit the thermal
Hall effect either.
The magnon-phonon interaction enters through the

dependence of the exchange interaction on the ion dis-
placement ui, i.e., phonons. For the isotropic Heisenberg
exchange, we find that expanding JðRijÞ in terms of ui only
normalizes the magnon energy and cannot lead to the
thermal Hall effect, since it preserves the rotational sym-
metry in the spin space [24]. On the other hand, the in-plane
DM interaction will have a nontrivial contribution to the
magnon-phonon hybrid. Expanding the DM interaction in
Eq. (3) to the first order in ui, we find

Hint ¼
X
hi;ji

X
α;β

ðuαi − uαj ÞTαβðR0
ijÞðδsβi − δsβj Þ; ð5Þ

where TαβðRÞ is the magnon-phonon coupling matrix,

TαβðRÞ ¼ D
jRj S½δ

αβ − ð1þ γÞR̂αR̂β�; ð6Þ

with γ ¼ −ðdD=dRÞ=ðD=RÞ. In obtaining Eq. (6), we note
that the DM interaction depends on both the bond length
Rij and the bond direction R̂ij. It is clear that at the lowest
order of the expansion, only the in-plane phonon modes are
involved in the magnon-phonon interaction, and we shall
only consider these modes from now on.
Since the magnon-phonon interaction in Eq. (5) couples

the spin δs to the displacement field u, it can be regarded as
an effective spin-orbit interaction for the magnon-phonon
hybrid. In particular, it breaks the T Cx symmetry, making

x
y

z

(a)

(b) (c)

broken

Rij

Dij

FIG. 1. (a) The setup illustrates the thermal hall effect of the
hybrid magnon-phonon system. Note that the out-of-plane
mirror symmetry is broken. (b) For the spin system, the
ferromagnetic Heisenberg exchange interaction and the
anisotropy develop a collinear ferromagnetic state with an out-
of-plane magnetization (blue arrow), and the out-of-plane mirror
symmetry breaking produces an in-plane DM interaction (green
arrow), perpendicular to the nearest-neighbor bond direction (red
arrow). (c) For the phonon system, an idealized lattice vibration
model with the first- (green wavy line) and second-nearest-
neighbor interactions (purple wavy line) is considered.
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the thermal Hall effect possible. We have therefore found
an interesting example in which neither the magnons nor
the phonons alone exhibit the thermal Hall effect, but the
magnon-phonon hybrid could, via the magnon-phonon
interaction.
We can also deduce the dependence of the thermal Hall

conductivity αxy on the DM interaction Dij and the
magnetization M. Since αxy is invariant under the out-of-
plane mirror reflection, flipping the sign of D, which is
determined by the mirror symmetry breaking, does not
change the sign of αxy; i.e., αxy must be an even function
of D. However, if we flip the direction of the magneti-
zation M, the whole system turns into its time-reversal
counterpart. Therefore, reversing the ground-state mag-
netization changes the sign of αxy.
Large magnetic anisotropy limit.—Having established

the symmetry requirement for the magnon-phonon-
interaction-induced thermal Hall effect, we now develop
a quantitative theory. Let us first consider the limit of large
magnetic anisotropy, K ≫ kBT. In this limit, the magnons
are pushed well above phonons in energy, and the thermal
transport is mainly contributed by phonons. We can thus
integrate out the magnon degree of freedom to obtain an
effective Hamiltonian for phonons [31]. Leaving the details
in the Supplemental Material [29], we find that the effective
Hamiltonian for phonons is given by

Heff
ph ¼

X
q

ðp−q −A−qu−qÞTðpq −AquqÞ
2M

þ 1

2
uT−qϕquq;

ð7Þ

where ϕαβ
q ≡Φαβ

q þ δΦαβ
q is the renormalized dynamical

matrix, andAαβ
q is the emergent gauge field experienced by

phonons. Detailed calculation shows that δΦαβ
q andAαβ

q are
proportional to the real part and the imaginary part of the
spin-spin response function of the ferromagnetic state,
respectively [29]. Equation (7) describes a phonon system
in a perpendicular magnetic field [32] and can lead to the
thermal Hall effect of phonons.
We note that the mechanism of this phonon Hall effect is

different from that originated from the Raman-type spin-
lattice interaction [19,33]. In the Raman-type interaction,
the phonon modes couple to the static spin ground state,
while in our model, phonons couple to magnons which
describe the dynamic of the spin system.
Magnon-phonon hybrid.—If the magnon and phonon

bands are close in energy, we need to treat them on an
equal footing and consider the complete Hamiltonian
that includes both magnons and phonons, i.e., H ¼
Hsw þHph þHint. As a simple example, we consider a
magnon-phonon interacting system on a 2D square lattice.
The linear spin wave model in Eq. (2) can be solved
by applying the Holstein-Primakoff transformation [34],

δsix¼
ffiffiffiffiffiffiffiffi
S=2

p ðaiþa†i Þ, δsiy¼−i
ffiffiffiffiffiffiffiffi
S=2

p ðai−a†i Þ, and δsiz ¼
−a†i ai, where ai and a†i are the creation and annihilation
operators for magnons at the i site. This transformation
gives rise to the magnon band dispersion Emq ¼
2SJ½2 − cosðqxaÞ − cosðqyaÞ� þ Kð2S − 1Þ=2. For the
phonon part, we consider the first- and the second-
nearest-neighbor interactions [see Fig. 1(c)]. The dynamic
matrix in this case is given in the Supplemental
Material [29].
The dynamics of the magnon-phonon hybrid excitation

can be determined by the generalized Bogoliubov–de
Gennes (BdG) equation. To this end, we transform into
the Fourier space and work in the basis of ψ̂q¼½ðaqþa†−qÞ=ffiffiffi
2

p
;ðaq−a†−qÞ=ð

ffiffiffi
2

p
iÞ; ũxq; ũyq;p̃x

−q;p̃
y
−q�T , where the dimen-

sionless operators are given by ũαq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MΩ=ℏ

p
uαq and

p̃α
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=MΩℏ

p
pα
q, and Ω is the vibration frequency of

nearest-neighbor ions. From the Heisenberg equation of
motion iℏ∂tψ̂q ¼ ½ψ̂q; H�, we obtain [29]

iℏJ ∂tψ̂q ¼ Hqψ̂q; ð8Þ

where the matrix J is given by

J ¼ ½ψ̂q; ψ̂
†
q� ¼

0
B@

−σy 0 0

0 0 iI2×2
0 −iI2×2 0

1
CA: ð9Þ

The effective Hamiltonian matrix of the hybrid system Hq

has the form

Hq ¼

0
BB@

EmqI2×2 M†
1 0

M1 Φ̃ðqÞ 0

0 0 ℏΩI2×2

1
CCA; ð10Þ

where M1 is a real diagonal matrix proportional to the DM
strength D, given by

M1 ¼
D
a

ffiffiffiffiffiffiffiffiffiffiffi
ℏS3

2MΩ

r �
2 − 2 cosðqyaÞ 0

0 2 − 2 cosðqxaÞ

�

−
γD
a

ffiffiffiffiffiffiffiffiffiffiffi
ℏS3

2MΩ

r �
2 − 2 cosðqxaÞ 0

0 2 − 2 cosðqyaÞ
�
;

ð11Þ

and Φ̃ðqÞ ¼ ℏΦðqÞ=ðMΩÞ.
The frequency of the magnon-phonon hybrid excitation

can be derived by solving the eigenvalue problem of the
generalized BdG equation EnqJΨnq ¼ HqΨnq. Note that
this system has a particle-hole symmetry, meaning that
the spectrum has a positive branch and a negative branch.
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Since the excitation spectrum can only have positive
energies, the negative branch is redundant.
We derive the thermal Hall conductance of the magnon-

phonon hybrid excitation using the wave packet theory
[35]. The wave packet of the hybrid excitation is written as
jWi ¼ R

dq2wðq; tÞeiq·rjΨnqi, where wðq; tÞ is the envelope
function centered around the center-of-mass momentum
qc ¼

R
dq2jwðq; tÞj2q. Accordingly, the center of the wave

packet in real space is given by rc ¼ hWjJ rjWi=hWjJ jWi.
We derive the equation of motion for the wave packet from
the Lagrangian L ¼ hWjiℏJ d=dt −HjWi=hWjJ jWi and
hWjHjWi=hWjJ jWi ¼ Enqc . Using the Euler-Lagrangian
equation, we can obtain the equation of motion for the wave
packet center rc [21,36–38],

_rc ¼
∂Enqc

ℏ∂qc þ
1

ℏ
∇UðrcÞ ×ΩnðqcÞ; ð12Þ

where UðrÞ is the potential felt by the wave packet, and the
Berry curvature is defined by Ωz

n ¼ ∂qxAny − ∂qyAnx, with
An ¼ ihΨnqjJ ∂qjΨnqi=hΨnqjJ jΨnqi being the Berry
connection.
Using the equation of motion of the wave packet, the

thermal Hall current for bosonic excitations is given by
[17,18,39,40]

j¼ k2BT
ℏ

ẑ×∇T
X
n

Z
d2q
ð2πÞ2Ω

z
nðqÞ

�
ð1þ ρnqÞln2

�
1þ ρnq
ρnq

�

− ln2ρnq − 2Li2ð−ρnqÞ
�
: ð13Þ

Here ρnq ¼ 1=ðeEnðqÞ=kBT − 1Þ is the Bose-Einstein distri-
bution function with a zero chemical potential, and the
index n in the Berry curvature Ωz

n is summed over all
positive bands.
Berry curvature hotspots.—A generic feature of the

magnon-phonon hybrid bands is the existence of anticross-
ing points due to the magnon-phonon interaction. These
anticrossing points give rise to the Berry curvature hotspots
that contribute resonantly to the thermal Hall conductivity
and lead to a sizable effect. To demonstrate this, below we
carry out a numerical estimation of the thermal Hall
conductivity.
Suppose the magnetic ions are one of the 3d transition

metal atoms. For an estimation, we set the total spin
S ¼ 3=2 and atomic massM ¼ 50 proton mass. The typical
values of the Heisenberg exchange is on the order of meV,
and we have chosen J ¼ 2 meV. For the perpendicular
magnetic anisotropy, we set K ¼ 1 meV, which is attain-
able in low-dimensional systems [41]. The most important
parameter is the DM interaction due to mirror symmetry
breaking. It has been shown that DM interaction of this type
can be as large as 20% of the Heisenberg exchange J in
heterostructures [27]. For the phonon part, we will set the

lattice vibration frequency for the nearest-neighbor inter-
actions at 10 meV, and for the second-nearest-neighbor
interactions at 5 meV. For simplicity, we have set γ ¼ 0 in
Eq. (6) [42].
Figure 2(a) shows the band structure of the magnon-

phonon hybrid. The bands have several anticrossing points
due to the magnon-phonon interaction. Those gaps are too
small to be seen, but the Berry curvature hotspots shown in
Figs. 2(b)–2(d) are their fingerprints—we have verified that
those hotspots are precisely where the anticrossing points
are located. The Berry curvature hotspots dominate the
contribution to the thermal Hall conductivity, and can lead
to a large effect. The dependence of the thermal Hall

(a)

(c) (d)

(b)

FIG. 2. The band structure and Berry curvature using the
parameters in the main text with D ¼ 0.4 meV. (a) The band
structure of the magnon-phonon hybrid system along the high-
symmetry line Γ − X −M − Γ. The degeneracies in the bands
are lifted by the magnon-phonon interaction, as shown in the
inset. (b)–(d) The distribution of Berry curvatures in log scale
ΓðΩzÞ≡ sgnðΩzÞ lnð1þ jΩzjÞ for (b) the lowest band, (c) the
middle band, and (d) the highest band.

FIG. 3. The thermal Hall conductivity αxy as a function of
temperature and the strength of DM interaction D. Other
parameters are defined in the main text.
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conductivity αxy on both temperature and the strength of
the DM interaction is shown in Fig. 3. For T ¼ 20 K,
D ¼ 0.2 meV, αxy ∼ 1.5 × 10−13W=K. In Ref. [8], the
magnon thermal Hall conductance of the bulk sample is
around 10−3WK−1 m−1. If we assume that the thickness of
a monolayer sample is 5 Å, then the thermal Hall con-
ductance for one monolayer is about 5 × 10−13W=K.
Therefore, the thermal Hall conductance of our model is
of the same order as that of the magnon Hall effect. We
have also verified that the order-of-magnitude estimation is
robust against changes of the material parameters.
In summary, we have proposed a new mechanism for the

thermal Hall effect in an exchange spin-wave system by
magnon-phonon interactions. The key ingredient is an out-
of-plane magnetization and an in-plane DM vector due to
mirror symmetry breaking. Even though our discussion is
focused on a 2D spin layer, the mirror symmetry breaking
can be realized in bulk crystals consisting of stacked 2D
layers with broken mirror symmetry, or in superlattices of
magnetic multilayers, where the mirror symmetry is broken
by the heterointerface. We note that the magnon-phonon
interaction arising from long-range dipolar couplings
could in principle also contribute to the thermal Hall
effect [24]. However, our symmetry-based mechanism
can also be active in antiferromagnets where the dipolar
coupling is absent. Our result revealed the crucial role of
the magnon-phonon interaction in the thermal Hall effect,
and it may find applications in the emerging field of spin
caloritronics [25].
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Note added.—We have become aware of a recent paper [45]
in which the thermal Hall effect from magnon-phonon
interactions in noncollinear antiferromagnets is considered.
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