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When the feature size of photonic structures becomes comparable or even smaller than the wavelength
of light, the fabrication imperfections inevitably introduce disorder that may eliminate many functionalities
of subwavelength photonic devices. Here we suggest a novel concept to achieve a robust band gap which
can endure disorder beyond 30% as a result of the transition from photonic crystals to Mie-resonant
metamaterials. By utilizing Mie-resonant metamaterials with high refractive index, we demonstrate
photonic waveguides and cavities with strong robustness to position disorder, thus providing a novel
approach to the band-gap-based nanophotonic devices with new properties and functionalities.
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The idea of manipulating electromagnetic waves with
subwavelength structures originates from the 19th century,
when Heinrich Hertz managed to control meter-long radio
waves through a wire-grid polarizer with centimeter spac-
ings [1]. With the rapid advancement of nanotechnology
with fabrication resolution down to micrometer or even
nanometers, a plethora of subwavelength systems with
structure-induced optical properties are achieved, ranging
from photonic crystals to metamaterials [2]. Among them,
a photonic crystal (PHC) is a periodic optical structure
that has attracted considerable interest for its ability to
confine, manipulate, and guide light [3]. Spatial periodicity
of the dielectric function is essential to obtain a photonic
band gap where the propagation for photons within a
certain frequency gap is forbidden, providing unique
features for a variety of applications ranging from lasers
[4,5] and all-optical memories [6] to sensing [7] and emi-
ssion control [8].
To achieve unparalleled functionalities with the subwa-

velength structures, a stringent requirement for the fab-
rication accuracy is required. As a result, the impact of
disorder on such photonic structures has extensively been
studied, both numerically and experimentally [9–38].
When the disorder is small enough (up to a few percent
of the lattice constant) and can be treated as a perturbation,
the interaction between the order and disorder gives rise
to interesting optical transport phenomena involving
multiple light scattering, diffusion, and localization of light
[16–18,20–24]. As disorder is increased further, the pho-
tonic band gap is destroyed, owing to the adverse effect on

the Bragg reflection [25–33]. For example, only a few
percent of disorder can eliminate the band gap of inverse
opal photonic crystals [25,26]. The only way to achieve
robustness is to utilize nontrivial topological properties [39]
in waveguides with gyromagnetic materials. However, the
external magnetic field is a prerequisite to break time-
reversal symmetry [40], hindering its practical application.
Being inspired by the recent studies of dielectric

Mie-resonant metamaterials (MMs) and their link to
PHCs [41–43], here we consider photonic structures with
optically induced Mie resonances and reveal that they can
support disorder-immune photonic band gaps, in sharp
contrast with PHC where the Bragg resonances require
stringent periodicity and consequently are not tolerant to
disorder. Our numerical results demonstrate robustness of
the optical waveguides under intense disorder, suggesting
the way towards a new generation of disorder-immune
photonic devices with cost-effective fabrication processes.
We start from an ideal periodic structure composed of

nanorods arranged in a square lattice, as illustrated in the
left panel of Fig. 1. The lattice constant is a ¼ 500 nm and
the rod radius is r ¼ 125 nm, so that the ratio r=a defines a
filling fraction of the structure. The permittivity of the
nanorod is ε, with whose value identifies the system either
as photonic crystals (low ε) or dielectric metamaterials
(high ε) [41]. We consider the transverse electric (TE)
waves with the magnetic field along the rod axis. As the
first step, we introduce disorder to the rod position ðxi; yiÞ
as xi ¼ xi0 þ σUx and yi ¼ yi0 þ σUy, where ðxi0; yi0Þ is the
original position in the periodic lattice, Ux and Uy are

PHYSICAL REVIEW LETTERS 123, 163901 (2019)

0031-9007=19=123(16)=163901(6) 163901-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.163901&domain=pdf&date_stamp=2019-10-15
https://doi.org/10.1103/PhysRevLett.123.163901
https://doi.org/10.1103/PhysRevLett.123.163901
https://doi.org/10.1103/PhysRevLett.123.163901
https://doi.org/10.1103/PhysRevLett.123.163901


random variables distributed uniformly over the interval

½−1; 1�, and the parameter σ describes the strength of the

disorder. We also consider the normalized disorder strength
η defined as the σ-to-a ratio expressed in percentage. Since
the height of the nanorod is much larger than its radius, a
two-dimensional approximation in the ðx; yÞ plane is valid.
When disorder is introduced (Fig. 1), the translational

symmetry of the structure becomes broken, making the
band gap structure of the spectrum in the reciprocal space
ill-defined. As a result, we study properties of these
photonic structures in the real space assuming that the
low-transmission spectral regions associated with band
gaps are still observable in the corresponding spectrum.
In the analysis of disordered media, the light propaga-

tion is characterized by a logarithmic-average transmis-
sion instead of average transmission (see Ref. [44] for

details). Figure 2 demonstrates the logarithmic-averaged
transmission (averaged over an ensemble of 100 samples)
vs the disorder strength η for both photonic crystals and
metamaterials. In addition, we show the results for the wave
propagation through the corresponding structures with a
specific disorder realization for the lowest band gap. We
observe that the spectra consist of a number of pronounced
dips (associated with the spectral gaps) which can be linked
to either Mie and Bragg resonances. The Bragg gaps are ob-
served as symmetric dips, while the Mie gaps have a knife-
tip shape. In the regime of photonic crystals [Fig. 2(a)], we
observe a degradation of all gaps with a stronger effect
manifested for the second band gap associated with the
TE01 Mie resonances (about 70 dB for even weak disorder
σ ¼ 50 nm or η ¼ 10%).
In sharp contrast, in the regime of a metamaterial

[Fig. 2(d)], the lowest band gap survives under even strong
disorder of σ ¼ 200 nm (or η ¼ 40%). In this regime, the
Mie scattering from individual nanorods play a paramount
role in forming the band gap through the TE01 Mie
resonances, reducing strict requirements of periodicity.
The field distributions shown in Figs. 2(e) and 2(f) reveal
the effective field suppression by each nanorod oscillating
out of phase with the incident wave. The rigorous model
accounts for perturbations of coupling constants between
neighbor rods [45] due to the position disorder. It results in
the degradation of the suppression; however this affects the
TE01 Mie gap much weaker than its Bragg counterpart.

disorder

σ = 0 σ = σ0 σ >> σ0

FIG. 1. Schematic of photonic structures, composed of dielec-
tric nanorods, with an increasing position disorder σ, respectively.
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FIG. 2. Transmission spectra of (a) a photonic crystal (with ε ¼ 4) and (d) a metamaterial (with ε ¼ 25) with different values of the
disorder parameter η. Black solid curves are perfect structures (η ¼ 0), red dashed curves are weak disorder (η ¼ 10%); green dash-dot
curves are moderate disorder (η ¼ 20%); blue dotted curves correspond to a strong disorder (η ¼ 40%). Origin of spectral dips are
labeled. Magnetic field distribution in (c) and (d) photonic crystal (for η ¼ 0 and η ¼ 40%, respectively) and (e) and (f) metamaterial
(with η ¼ 0 and η ¼ 40%, respectively). In each of the panels (c),(d) and (e),(f) the waves propagate from the bottom to the top.
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Remarkably, the position disorder affects all other gaps
including higher-order Mie gaps. The reason is that Bragg
frequency obeys the law f ∝ ðd cos θÞ−1, where d is a
lattice spacing and θ is the propagation angle. The higher-
order Mie gaps above the lowest Bragg gap do not
demonstrate robustness, since they are not pure Mie gaps
but mixtures with Bragg waves for certain directions. Thus,
in spite of the identical configurations of the dielectric
nanorods in Figs. 2(c) and 2(f), the wave propagation is
remarkably different when the dielectric constant ε of each
rod changes from low to higher values.
To provide a comprehensive picture of the impact of the

position disorder to the system transforming from the PHC
to MM regimes, we conduct a series of numerical simu-
lations with different values of ε ranging from 4 to 25. To
quantitatively represent the robustness of the photonic band
gap, we define parameter γ ¼ ðR̄0 − R̄Þ=R̄0, where R̄ ¼
R λ2
λ1
Rdλ=ðλ2 − λ1Þ is the averaged reflection in the band gap

between λ1 and λ2; λ1 and λ2 are wavelengths at 10% of the
transmission minimum.
The degradation is normalized by R̄0, that is the re-

flection in the band gap without disorder. Consequently, γ
represents the deterioration of reflection in the band gap,
with a smaller value demonstrating a better robustness.
Figure 3(a) summarizes the value of γ with different ε as the
disorder σ increases for the band gaps with lowest energy
[as shown in Figs. 2(a) and 2(d)]. The value of γ is averaged
from three different sets of the uniform random variables.
The relative change to the lattice constant is also labeled by
the η axis. The diagram can be unambiguously divided into
three regimes. When the value of ε is small, the system
operates as a PHC, corresponding to the situation shown in
Figs. 2(a)–2(c). The band gap is quite vulnerable to the
disorder, around 10% of the position disorder can break the
perfection of the photonic band gap. As the increment of
the permittivity, the system transforms into a new regime,
where the band gaps are formed by the overlap of Mie and
Bragg resonances [41]. The Mie scattering from individual
nanorods increases the robustness to the disorder, reducing

the degradation γ compared to the previous regime. Further
enhancement of ε drives the lowest band gap formed by the
Mie scattering, and the system transforms into the effective
MM structure with a good robustness to the position
disorder. Under intense disorder, a well-defined stop band
persists, as illustrated in Figs. 2(d)–2(f). The transition of
the robustness parameter γ precisely matches the phase
transition from PHC to MM “phases” [41], identifying the
unique role of the Mie scattering playing in the disorder-
immune photonic band gaps.
To illustrate generality of the disorder-immune photonic

band gaps, we analyze the structure robustness for a
different geometry, namely a hexagonal lattice of nanorods
that can support a band gap for the TE waves [46].
In addition, a different ratio r=a ¼ 0.3 is employed for
the generality study while the lattice constant is kept the
same, a ¼ 500 nm. Figure 3(b) shows the value of γ for
varying ε. A similar behavior is illustrated for a square lattice
nanorods in Fig. 3(a), demonstrating three regimes with
different levels of robustness to the position disorder. The
values of ε for achieving strong robustness is ameliorated to a
smaller value around 15 due to the optimal lattice [47]. The
typical transmission spectra for both PHC and MM regimes
can be found in the Supplemental Material [48].
We further investigate the robustness effect for more

practical structures such as a photonic waveguide. The
waveguide is readily generated by introducing a line defect
along the y direction. For the PHC case, we select the TE01

Mie band gap with a better light confinement (since the
Bragg frequency has a strong angular dependence).
Figures 4(a) and 4(b) illustrate the spatial distribution of
the magnetic field in a disorder-impacted waveguide operat-
ing as PHC and MM, respectively, while the disorder-free
example can be found in the Supplemental Material [48].
Here the disorder parameter σ ¼ 50 nm. In spite of the
disorder destroying the ideal structure, the light is still well
confined in the active region [Fig. 4(b)], demonstrating a
good robustness when operating in the MM regime. With a
reduced value of ε, thewaveguide losses its functionwith the
transverse diffusion under the same position configuration
for a PHC, as shown in Fig. 4(a). To quantitatively demon-
strate the impact of disorder, we calculated the transmission
T of the waveguide under different σ, as shown in Fig. 4(c).
Similarly, the transmission is normalized to T0, the value
without disorder for the comparison.A definite improvement
of the robustness for the waveguide is observed for the MM
regime with large permittivity. In addition, a more compli-
cated situation is investigated with a bent waveguide
embedded into a hexagonal lattice, as shown in Figs. 4(d)
and 4(e). Despite the vulnerability to the disorder at the
corner where the propagation directionvaries, thewaveguide
operating in the MM regime [Fig. 4(e)] persists to function
under the position disorder, compared with the PHC regime
[Fig. 4(d)]. We implement a quantitative analysis for the
transmission degradation in Fig. 4(f), demonstrating the
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robustness enhancement from permittivity increment similar
to a straight waveguide in a square lattice of nanorods shown
in Fig. 4(c).
Besides waveguides, PHCs are widely used to build

optical cavities for different applications ranging from
lasing to sensing. Consequently, it is crucial to clarify
the robustness of an optical cavity formed by high-index
dielectric rods. Here we create an optical cavity by
introducing a point defect in the hexagonal lattice, as
shown in Fig. 5(a). Again, we assume that disorder is

embedded in the rod position, as demonstrated in Fig. 5(a)
for a perfect cavity (σ ¼ 0, upper panel) and a disordered
cavity (σ ¼ 100 nm, lower panel).
The position fluctuations for nanorods defining the cavity

boundary (circles) is intentionally eliminated to provide a
fixed cavity shape. For the evaluation of the cavity robust-
ness, we analyze the Q factor calculated as Q ¼ ωR=Δω
through the signals from four randomly located points inside
the cavity, with ωR being the resonant frequency, and Δω
being the FWHM parameter. Figure 5(b) demonstrates a
relationship between Q and σ for both PHC and MM
regimes, respectively, with the value averaged with three
different sets of random variables. The Q factor is norma-
lized to its valuewithout disorder,Q0, to exclude a difference
between the two cases. We observe that PHC structures
(ε ¼ 4) are quite fragile to the disorder,whereas the photonic
cavity operating in the MM regime (ε ¼ 15) is more robust,
only experiencing severe degradation when σ reaches
50 nm.With the introduction ofmoderate degree of disorder,
the quality factor is improvedwith thevalueQ=Q0 beyond1,
matching earlier results in [29].
In addition to fluctuations in the rod positions, we study

also the robustness to a size disorder and consider a
photonic structure of different nanorods, see Figs. 5(c)
and 5(d). We assume that the disorder introduces fluctua-
tions in the rod radii, r ¼ rþ σrUr, where Ur are random
variables distributed uniformly over the interval ½−1; 1�,
and the relative disorder is η ¼ σ=a ¼ σr=r. Figure 5(c)
shows a typical disordered structure with η ¼ 25%.
Similarly, we use the parameter γ to evaluate the structure
robustness, as shown in Fig. 5(d) for the regimes that
transform from PHC (ε ¼ 4) to MM (ε ¼ 25). The fluctua-
tions in the nanorod radius cause a variation of the Mie
resonance, consequently inducing deterioration of the
robustness compared with the case presented in Fig. 3(a).
In addition, the same fluctuation in size σr could bring
stronger disorder to the nanorod with higher permittivity,
considering the optical wavelength inside the dielectric
λ ¼ λ0=

ffiffiffi
ε

p
and consequently increasing the ratio between

σr=λ. This effect causes the robustness to decrease as the
increment of ε in some regions. However, an obvious
improvement in robustness is observed when the system
works in the Mie regime as a metamaterial compared to
photonic crystals in the Bragg regime.
In summary, we have revealed a novel regime for the

scattering of light in photonic structures with robust band
gaps by transforming the structure from a photonic crystal
to a dielectric metamaterial. When the Mie scattering from
individual dielectric elements dominates over the Bragg
scattering, both reflection and confinement of light
becomes immune to an intense disorder. Our study provides
a useful guide for the nanofabrication of different photonic
structures by employing dielectric metamaterials with high
ε for achieving the robust band gap regime and also lifting
strict requirements on periodicity. For hexagonal lattices,
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one can achieve robust band gaps from the visible to
infrared spectra for GaAs [49] and Ge [50]. Importantly,
such photonic structures can be realized with the bottom-up
fabrication approach by utilizing the vertically aligned
nanowires [51–53]. In this case, the fluctuations in position
dominate compared with that in size, as shown in Fig. 3(a).
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