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We report the first measurement of rapidity-odd directed flow (v,) for D° and D" mesons at midrapidity
(ly] < 0.8) in Au + Au collisions at /sy = 200 GeV using the STAR detector at the Relativistic Heavy
Ton Collider. In 10-80% Au + Au collisions, the slope of the v, rapidity dependence (dv,/dy), averaged

over D° and D° mesons, is —0.080 4= 0.017(stat) + 0.016(syst) for transverse momentum p; above
1.5 GeV/c. The absolute value of D° meson dv, /dy is about 25 times larger than that for charged kaons,
with 3.4¢ significance. These data give a unique insight into the initial tilt of the produced matter, and offer
constraints on the geometric and transport parameters of the hot QCD medium created in relativistic heavy-

ion collisions.

DOI: 10.1103/PhysRevLett.123.162301

An important goal of relativistic heavy-ion collisions is to
understand the production and dynamics of strongly inter-
acting matter produced at high energy densities [1-8]. The
collective motion of particles emitted in such collisions are
of special interest because of their sensitivity to the initial
stages of the collision, when production of a deconfined
quark-gluon plasma (QGP) phase is expected. The directed
flow (v;) of particles is characterized by the first harmonic
Fourier coefficient in the azimuthal distribution relative to
the reaction plane (Wgp, subtended by the impact parameter
direction and the beam), [9-11],

vy = (cos(¢ — Prp)), (1)

where ¢ denotes the azimuthal angle of the particle of
interest. Experimentally, the Wgp is approximated by the first
harmonic event plane (¥;gp) and measured using the
azimuthal distribution of spectator fragments in the forward
rapidity [10,12]. A hydrodynamic calculation with a tilted
initial QGP source [13] can explain the observed negative v,
slope or “anti-flow” [14] near midrapidity, for charged
hadrons measured at relativistic heavy ion collider
(RHIC) energies [12,15,16]. However, additional contribu-
tions to the directed flow could result from a dipolelike
density asymmetry, nuclear shadowing (the interactions
between particles and spectators), or a difference in density
gradients in different directions within the transverse plane
[17-19]. The study of heavy quarks (c and b) in heavy-ion
collisions is especially important due to their early creation.
Owing to their large masses, heavy quarks are predomi-
nantly produced in initial hard scatterings and their relax-
ation time in the QGP medium is comparable to the lifetime
of the QGP. Consequently, heavy quarks are an excellent
probe to study QGP dynamics [20].

The transverse momentum (p7) spectra and elliptic
flow (v,) of D° mesons at midrapidity have been measured
at RHIC [21,22] and LHC [23-25] energies. The magnitude
of v, for the charm hadrons is found to follow the number-of-
constituent-quark scaling pattern observed for light hadron

species in noncentral heavy-ion collisions [21,26-28].
Furthermore, charm hadron yields are observed to be
significantly suppressed at high pz, similar to light hadron
species in central heavy-ion collisions. Simultaneous
descriptions of charm v, and nuclear modification factors
[22,29-31] have been used to constrain the QGP transport
parameters for heavy quarks, such as its drag and diffusion
coefficients.

A recent model calculation utilizing Langevin dynamics
coupled to a hydrodynamic medium with a tilted initial
source, predicted a significantly larger v; for D mesons
compared to light flavor hadrons [32]. A notable feature is
the strong sensitivity of D meson v to the initial tilt of the
QGP source compared to that of light hadrons. The
magnitude of the observed heavy quark v is also sensitive
to the QGP transport parameters in the hydrodynamic
calculation.

It is further predicted that the transient magnetic field
generated in heavy-ion collisions can induce a larger
directed flow for heavy quarks than for light quarks due
to the Lorentz force [33,34]. The v, induced by this initial
electromagnetic (EM) field is expected to have the same
magnitude, but opposite charge sign for charm (c¢) and
anticharm (¢) quarks. This suggests that the v; measure-
ments of heavy quarks could offer crucial insight into the
properties of the initial EM field. A hydrodynamic model
calculation which includes both the initially tilted source
and the EM field predicts that the D mesons will have a
significant v; as a function of rapidity (v) and a splitting is
to be expected between D mesons and D mesons due to the
initial magnetic field [35].

In this Letter, we report the first measurement of
rapidity-odd directed flow for D° and D° mesons at
midrapidity (]y| < 0.8) for p;y > 1.5 GeV/c in 10-80%
central Au+ Au collisions at /sy = 200 GeV in the
STAR experiment [36]. We utilize the heavy flavor tracker
(HFT) [37,38], a high-resolution silicon detector consisting
of four cylindrical layers. Beginning at the largest radius,
there is one layer of silicon strip detector (SSD), one layer
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of intermediate silicon tracker (IST), and two layers of pixel
detectors (PXL). The reconstruction of heavy-flavor
hadrons is greatly enhanced due to the excellent track
pointing resolution and secondary vertex resolution offered
by the HFT. STAR collected minimum-bias (MB) triggered
events with the HFT during the years 2014 and 2016. The
MB events were selected by a coincidence between the east
and west vertex position detectors (VPD) [39] located at
pseudorapidity 4.4 < || <4.9. To ensure good HFT
acceptance, the reconstructed primary vertex along the z
direction is required to be within 6 cm of the center of the
detector. Approximately 2.2 billion MB triggered good
quality events are used in this analysis.

The D° and D° mesons are reconstructed via their
hadronic decay channel: D°(D°) — K~z"(K*z~) (branch-
ing fraction 3.93%, ¢t ~ 123 um) [40]. Hereafter, D° refers

to the combined D° and D° samples, unless explicitly stated
otherwise. The charged particle tracks are reconstructed
using the time projection chamber (TPC) [41] together with
the HFT in a uniform 0.5 T magnetic field. The collision
centrality is determined from the number of charged
particles within || < 0.5 and corrected for trigger ineffi-
ciency using a Monte Carlo Glauber simulation [42]. Good
quality tracks are ensured by requiring a minimum of 20
TPC hits (out of a possible 45), hits in both layers of PXL, at
least one hit in the IST or SSD layer. Further, the tracks are
required to have transverse momentum p; > 0.6 GeV/c
and pseudorapidity || < 1. The D° decay daughters are
identified via specific ionization energy loss (dE/dx) inside
the TPC and from 1/ measurements by the time of flight
(TOF) [43] detector. To identify particle species, the dE/dx
is required to be within three and two standard deviations
from the expected values for 7z and K, respectively. When
tracks are associated with the hits in the TOF detector, the
1/ is required to be within three standard deviations from
the expected values for both 7 and K.

The D° decay vertex is reconstructed as the midpoint of
the distance of closest approach between the two decay
daughter tracks. Background arises due to random combi-
nations of tracks passing close to the collision point. The
decay topological cuts are tuned to reduce the background
and enhance the signal-to-background ratio. The topologi-
cal cut variables are optimized using the toolkit for
multivariate data analysis (TMVA) package [44] and are
discussed in Refs. [21,31].

The sideward deflection of spectator neutrons is
expected to happen in the reaction plane. The first-order
event plane W, gp (an experimental approximate of the
reaction plane) is estimated through the sideward deflection
of spectator neutrons by utilizing east and west zero degree
calorimeter shower maximum detectors (ZDC-SMDs,
located at || > 6.3) [12,15,16,45-47],

b (§) (o).

where x; and y; are the fixed position for the seven vertical
and eight horizontal slats in the ZDC-SMD. The w;s are the
weighted ZDC-SMD signal and described in [45]. The
description of measuring v, using the ZDC-SMDs as an
event plane can be found in [12,45,46]. The resolution of
the measured first order event plane angle (R;gp) is
determined from the correlation between the event planes
in west (y > 6.3) and east (n < —6.3) sides of the ZDC-
SMD, R gp = (cos(¥1 gpwest — ¥1.8p.cast)) [10,12]. Ry gp
is obtained separately for seven centrality bins. R gp for
a wide centrality bin (10-80%) is determined from the
DP-yield-weighted mean of the individual centrality bins’
resolutions using a procedure detailed in Ref. [48]. For
10-80% central collisions, R gp is about 0.363. Systematic
uncertainties arising from event-plane estimation are less
than 2% and estimated using GENBOD and MEVSIM
event generators, discussed in Ref. [47].

Figures 1(a) and 1(b) show the D° and D° invariant mass
spectra for |y| < 0.8 and p; > 1.5 GeV/c in 10-80%
central Au + Au collisions at /sy = 200 GeV. The D
acceptance, in rapidity and azimuthal angle, under such
kinematic selection is uniform across the measured rapidity
region. We choose 10-80% centrality since the first-order
event plane resolution from ZDC-SMD in the 0-10%
central collisions drops about a factor of three relative
to midcentral collisions. The D° v, is calculated in
four rapidity bins using the event plane method [9-11].

10° 10° Au+Au \s, =200 GeV, 10-80%
-0.8<y<0.8
p,> 1.5 GeV/c

_
o
T
—
Q
~

Counts per 10 MeV/c?
(4]

o

Normalized Yield

FIG. 1. D° [panel (a)] and D [panel (b)] invariant mass
distribution for |y| <0.8 and pr > 1.5 GeV/c in 10-80%
central Au + Au collisions at /sxyy = 200 GeV. The solid line
represents a Gaussian fit plus a linear function for the random

combinatorial background. D° [panel (c)] and D° [panel (d)]
normalized yields in azimuthal angle bins relative to the first-
order event-plane azimuth (¢ — ¥ gp) with py > 1.5 GeV/c¢ for
four rapidity windows in 10-80% central Au + Au collisions at
/SN = 200 GeV. The dashed lines presents a fit to the function
Poll + 21% cos(¢p — W, gp)] corresponding to each rapidity bins.
Vertical bars show statistical uncertainties.
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The invariant mass distributions are fit with a Gaussian plus
a linear function, which provides a good estimate of
the random combinatorial background. The yield is
obtained by integrating the distribution in the range
1.82-1.91 GeV/c*> and subtracting the background
beneath the signal. Via an independent application of this

procedure, the D°(DP) yield is obtained in each ¢ — ¥ gp
bin for four rapidity windows between —0.8 to 0.8. The
qualities of the signal (invariant mass peak position, width
and signal to background ratios) as function of rapidity are

consistent within uncertainties for both D° and D° species.

Figures 1(c) and 1(d) present D° and D° yields as a
function of ¢ — ¥, gp for the four rapidity bins, normalized
to the averaged yield in the rapidity window. The value of
vy is calculated by fitting these data with a functional form
poll + 205 cos(¢p — W, gp)], indicated by the dashed lines
in the figure. The final v, is corrected by dividing 1" by
the event plane resolution (R gp).

Systematic uncertainties are assessed by comparing the
v, obtained from various methods. These comparisons
include (i) the fit vs sideband methods for the background
estimation, (ii) various invariant mass fitting ranges and
residual background functions (first-order vs second-order
polynomials) for signal extractions, (iii) histogram bin
counting vs functional integration for yield extraction,
(iv) varying topological cuts (for details refer to [31]) so
that the efficiency changes by +50% with respect to the
nominal value, (v) varying event and track level quality
cuts, and (vi) varying particle identification cuts. The above
comparisons are varied independently to form multiple
combinations. We have studied the pr-integrated yield
(dN/dy) and mean transverse momentum ({ p7)) of D° and

DY as function of rapidity. The dN/dy is consistent with the

observation that the yield of DO is higher than D° and
compatible with the published results [31]. The (p7) is
consistent between different rapidity bins and between D°

and D within uncertainties. The effect of misidentified D°
decay daughters (kaon-pion pairs) is studied in Ref [31]. It

is found to have negligible impact on the D° and DO yp 1
results and hence neglected. The typical systematic uncer-

tainty in the v, (y) of averaged D° and D° due to the signal
and yield extractions combining (i), (ii), and (iii) is less than
10%, while the same due to the event, track level, and
topological cut variations is less than 11%. For the final
systematic uncertainty on the v;(y) and dv,/dy, the
difference between the default settings and alternative
measurements from these sources are added in quadrature.
Further, the systematic uncertainty in each rapidity bin is
symmetrized by considering the maximum uncertainty
between D° and D°.

In Fig. 2, the filled circle and star markers present the
rapidity dependence of v, for the D° and D° mesons with
pr>15GeV/c in 10-80% Au+ Au collisions at

01 Au+AU |[5,,=200 GeV, 10-80%
p,> 1.5 GeV/e
S.—
z
ks
I o TR e L
Q
B
Q
=
* D° (uc)
—0.1 , | ,
-05 0 0.5

Rapidity (y)

FIG. 2. Filled circles and star symbols present v, as a function
of rapidity for D° and D° mesons at p; > 1.5 GeV/c for
10-80% centrality Au + Au collisions at /sy = 200 GeV.
The D° and D° data points are displaced along the x axis by
F 0.019, respectively, for clear visibility. The error bars and caps
denote statistical and systematic uncertainties, respectively. The
solid and dot-dashed lines present a linear fit to the data points for

D and DY, respectively.

V/Snn = 200 GeV. The D° (D% v, slope (dv,/dy) is
calculated by fitting v,(y) with a linear function con-
strained to pass through the origin, as shown by the solid

(dot-dashed) line in Fig. 2. The dv,/dy for D° and DO is
—0.086 + 0.025 (stat) +0.018 (syst) and —0.075 £ 0.024
(stat) +0.020 (syst), respectively. Figure 3(a) presents

v,(y) averaged over D° and D° (denoted (v;)) for
pr > 1.5 GeV/c. The dv,/dy for the averaged D° mesons
using a linear fit is —0.080 £ 0.017 (stat) +0.016 (syst).
The p value and y*/NDF for the linear fit passing through
the origin are 0.41 and 2.9/3 respectively. To perform a
statistical significance test for a null hypothesis for the

averaged v; of D° and D°, we calculate the y> of the
measured (v, ) values set to a constant at zero. The resulting
p value and y?/NDF are 0.005 and 14.9/4, respectively,
indicating that the data prefer a linear fit with a nonzero
slope. The D° v, (y) results are compared to charged kaons
[49], shown by open square markers in Fig. 3(a). The kaon
v;(y) is measured for p; > 0.2 GeV/c. The dv,/dy of
charged kaons, fit using a similar linear function, is
—0.0030 £ 0.0001 (stat) 4+0.0002 (syst). The inset in
Fig. 3(a) presents the ratio of the v, of the D° and charged
kaons. The absolute value of the D° mesons dv,/dy is
observed to be about 25 times larger than that of the kaons
with a 3.4¢ significance. Note that the (py) for kaons is
0.63 £ 0.04 GeV/c while that for D° mesons is 2.24 +
0.02 GeV/c in our measured p; acceptance for 10-80%
Au+ Au collisions at /sy = 200 GeV. Considering

the large mass difference between D and kaons, we are
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Au+AU \[5,,=200 GeV, 10-80%
%02 L

0.05—

STAR _ E
e D°+ D (Tc+uo)

-0.05F o K +K'(Us+ us)
Model:(D° + D°)
—— Hydro+EM (Chatterjee etal) —— AMPT
1 1 1 1 1
STAR _
(b) m D°-D° (dc- ut)
0.05 A K-K (US 'U§)

Av,

-0.05\— Model:(D° —0°
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FIG. 3.
for the combined samples of D° and D° at p; > 1.5 GeV/c in
10-80% central Au+ Au collisions at /syy = 200 GeV.
Open squares present v,(y) for charged kaons [49] with
pr > 0.2 GeV/c. The inset shows the ratio of »; between the
DO and charged kaons. The solid and dashed lines show hydro-
dynamic model calculation with an initial EM field [32,35] and
AMPT model [50] calculations, respectively. Panel (b): The solid
square markers present the difference in v, (y) (Av,) between D°
and D° for p; > 1.5 GeV/c in 10-80% Au + Au collisions at
V/Snn =200 GeV. Open triangles represent Av; between K~
and KT. The dotted and solid lines present a Av; prediction for
D? and DO, reported in Refs. [33] and [32,35], respectively. The
error bars and caps denote statistical and systematic uncertainties,
respectively.

Panel (a): Solid circles present directed flow ({(v,(y)))

probing these particles in the comparable transverse velo-
city regions. Moreover, among the measurements by the
STAR collaboration of v;(y) for 11 particle species in
Au + Au collisions at 200 GeV [16,47,49], the nominal
value of the D° dv, /dy is the largest.

In Fig. 3(a), the (v;) measurements are compared with
hydrodynamic (denoted by “Hydro 4+ EM”) [32,35] and
a-multi-phase transport (“AMPT”) [50] model predictions
are shown by solid and dashed lines, respectively. In
Ref [32], Langevin dynamics for heavy quarks are com-
bined with a hydrodynamic medium and a tilted initial
source [13]. It predicted a larger v, slope for D mesons
compared to light hadrons. It has been argued that the large
dv,/dy for D mesons is driven by the drag from the tilted

initial bulk medium. It is further predicted in Ref [33] that
the initial transient EM field can induce an opposite v; for
charm and anticharm quarks. The predicted magnitude of
such induced »; for charm quark hadron species is several
orders of magnitude larger than that for light hadron
species due to the early formation of charm quarks
[33,34]. Recently, the authors of Ref. [32] incorporated
the initial EM field in their model calculations and
predicted that the D-meson v, contribution from the tilted
initial source dominates over the contribution from the EM-
field [35], resulting in the same sign of dv,/dy for both D°

and D°. The solid line in Fig. 3(a) represents the prediction
of D° meson (v,(y)) from such a combined effect of tilt
and EM field in a hydrodynamic model and denoted as
“Hydro + EM.” The AMPT model calculation [50] shows
that although the initial rapidity-odd eccentricity (in spatial
coordinates) for heavy quarks is smaller than for light
quarks, the magnitude of v, for heavy flavor hadrons is
approximately seven times larger than that for light hadrons
at large rapidity. This calculation also suggests that, as a
result of being heavy and produced early, the charm
hadrons have an enhanced sensitivity to the initial dynam-
ics, which is over that for light hadrons. From the model
comparison we can infer that the “Hydro+ EM” and
“AMPT” models predicted the correct sign of dv;/dy.
Although both the models are in a qualitative agreement
with the data that the magnitude of heavy-flavor hadrons v,
is larger than for light hadrons, the v; magnitude for the D
mesons is underestimated in the model predictions.
A noteworthy feature of the hydrodynamic calculation is
the sensitivity of the dv,/dy for D mesons to the tilt
parameter. Reference [32] predicts that the D mesons
dvy/dy can be within the range 1-6% (about 5-20 times
larger than for charged hadrons) depending on the choice of
tilt and drag parameters. The current (v;) measurement can
help to constraint parameters in hydrodynamic and trans-
port models. o

Figure 3(b) shows the difference between D° and D°
vi(y) (denoted Aw;) measured in 10-80% centrality
Au + Au collisions at /sy = 200 GeV. The Av; slope
is fitted with a linear function through the origin to give
—0.011 + 0.034 (stat) £0.020 (syst). The dashed and solid
lines in Fig. 3(b) presents the Awv; expectation from two
models. The solid line (labeled “Hydro + EM”) is the
expectation from the model with effects from both a tilted
source and an initial EM field [35], while the dotted
line is the expectation from the initial EM field only
[33]. From these models, the predicted Awv; slope for the
charm hadrons lie within the range —0.008 to —0.004.
However, different values of medium conductivity and time
evolution of the EM fields, as well as the description of
charm quark dynamics in the QGP can cause large
variations in the charge dependent v, splitting. The present
predictions of Av; are smaller than the current precision
of the measurement. Nonetheless, the measurement could
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provide constraints on the possible variations of the
parameters characterizing the EM field and charm quark
evolution in the QGP.

In summary, we report the first observation of rapidity-
odd directed flow [v; (y)] for D° and D° mesons separately,
and for their average, at midrapidity (|y| < 0.8) for p; >
1.5 GeV/c in 10-80% central Au+ Au collisions at
V/Snn = 200 GeV using the STAR detector at RHIC.

The v, slope (dv,/dy) of D mesons are observed to be
about a factor of 25 times larger than that for charged kaons
with a 3.4¢ significance. The observation of a relatively
larger and negative v; slope for charmed hadrons with
respect to the light flavor hadrons can be qualitatively
explained by a hydrodynamic model with an initially tilted
QGP source [32] and by an AMPT model calculation.
These data not only give unique insight into the initial tilt of
the produced matter, they are expected to provide improved
constraints for the geometric and transport parameters of
the hot QCD medium created in relativistic heavy-ion
collisions.
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