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We consider the (3þ 1)-dimensional Maxwell theory in the situation where going around nontrivial
paths in the spacetime involves the action of the duality transformation exchanging the electric field and the
magnetic field, as well as its SLð2;ZÞ generalizations. We find that the anomaly of this system in a
particular formulation is 56 times that of a Weyl fermion. This result is derived in two independent ways:
one is by using the bulk symmetry protected topological phase in (4þ 1) dimensions characterizing the
anomaly, and the other is by considering the properties of a (5þ 1)-dimensional superconformal field
theory known as the E-string theory. This anomaly of the Maxwell theory plays an important role in the
consistency of string theory.
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Introduction.—Every physicist knows that the electro-
magnetic field is described classically by the Maxwell
equation and that it is invariant under the electromagnetic
duality S∶ ðE;BÞ ↦ ðB;−EÞ [1]. The properties of the
electromagnetic duality in quantum theory might not be as
well known to physicists in general and, in fact, are not very
well understood in the literature. This is particularly true
when going around a nontrivial path in the spacetime
results in a duality transformation [2]. In this Letter, we
focus on a feature of the Maxwell theory and its duality
symmetry in such a situation, namely, the fact that it has a
quantum anomaly [14,15], which we explicitly determine.
We recall that a quantum theory in dþ 1 dimensions

with a symmetry group G can have a quantum anomaly, in
the sense that its partition function has a controllable phase
ambiguity. Our modern understanding is that such a theory
is better thought of as living on the boundary of a symmetry
protected topological (SPT) phase in the [ðdþ 1Þ þ 1]-
dimensional bulk. It was noticed in the last few years in
[14,16–19] that a version of the Maxwell theory (often
called all-fermion electrodynamics, where all particles of
odd charge are fermions) has a global gravitational
anomaly and lives on the boundary of a certain bulk
SPT phase. As we will see, this result is a special case
of the anomaly and the corresponding bulk SPT phase that
we find for the duality symmetry.
We study the anomaly and the bulk SPT phase by

imitating the relationship between the (1þ 1)-dimensional

chiral boson and the (2þ 1)-dimensional Uð1Þ1
Chern-Simons theory and its generalization to the
[ð4nþ 1Þ þ 1]-dimensional self-dual form field and the
[ð4nþ 2Þ þ 1]-dimensional bulk theory studied, e.g., in
[20–26]. The essential point is that the (3þ 1)-dimensional
Maxwell theory with a nontrivial background for its duality
symmetry is a self-dual field, and we can utilize the
techniques developed in the papers listed above to study
it. One of ourmainmessages is that the subtle and interesting
issues concerning the self-dual fields studied in the past
already manifest themselves in the case of the Maxwell
theory once the nontrivial background for its duality
symmetry is turned on.
Before proceeding, we note that the electromagnetic

duality group in the quantum theory is, in fact, the 2-
dimensional special linear group SLð2;ZÞ over the integers
acting on lattice Z2 of the electric and magnetic charges. Its
effect on the Maxwell theory on a curved manifold was
carefully analyzed in [27,28], and it was interpreted as a
mixed SLð2;ZÞ-gravitational anomaly in [15]. Our result in
this Letter can be considered as the determination of the
pure SLð2;ZÞ part of the anomaly.
Our computation shows that the anomaly of the Maxwell

theory is 56 times that of aWeyl fermion in a certain precise
formulation of the duality. Where does this number 56
come from? We will provide an answer using the property
of a (5þ 1)-dimensional superconformal field theory
originally found in [29,30] and known as the E-string
theory; the name comes from the fact that it has E8 global
symmetry. The E-string theory has two branches of vacua:
called the tensor branch and the Higgs branch. On the
Higgs branch, the E8 symmetry is Higgsed to E7, which
acts on 28 fermions via its 56-dimensional fundamental
representation; this is possible because a pseudoreal
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representation R with dimR ¼ 2k can act on k fermions in
(5þ 1) dimensions because the spin representation S in
(5þ 1) dimensions is pseudoreal and we can impose the
Majorana condition on R ⊗ S. When one moves to the
tensor branch, the E8 symmetry is restored and a self-dual
tensor field appears. By compactifying this system on T2,
one finds that one Maxwell field is continuously connected
to 56 Weyl fermions, showing that they should have the
same anomaly. The electromagnetic duality is formulated
as the SLð2;ZÞ acting on this torus T2, and therefore is
geometrized in this formulation. This means that both the
purely SLð2;ZÞ part and the mixed gravitational-SLð2;ZÞ
part of the (3þ 1)-dimensional anomaly come from the
purely gravitational anomaly of the (5þ 1)-dimensional
theory. These statements about the anomaly are valid if the
E8 background field is turned off.
The rest of the Letter is organized as follows. We start by

recalling how the anomaly of a (1þ 1)-dimensional chiral
boson is captured by the phase of the partition function of the
(2þ 1)-dimensional Uð1Þ Chern-Simons theory at level 1.
We outline the path integral computation of its phase, as well
as how this can be matched with the anomaly of a (1þ 1)-
dimensional chiral fermion.We then adapt this discussion to
the anomaly of the (3þ 1)-dimensionalMaxwell theory and
the corresponding (4þ 1)-dimensional bulk BdC theory.
We will see that the anomaly computed in this way
reproduces the known anomaly when the SLð2;ZÞ back-
ground is trivial. We then consider the case of the nontrivial
SLð2;ZÞ backgrounds on S5=Zk for k ¼ 2, 3, 4, and 6; and
we note that the resulting phase is equal to 56 times that of a
charged Weyl fermion. This plays an important role in the
consistency of theO3− plane and its generalizations. Finally,
we explainwhy the anomaly of theMaxwell theory has to be
56 times that of a charged Weyl fermion in terms of the six-
dimensional superconformal field theory known as the
E-string theory. More details will be provided in a longer
version of the Letter [31].
Warm-up: Anomaly of (1þ 1)-dimensional chiral boson

in terms of (2þ 1)-dimensional U(1) Chern-Simons.—We
start by recalling the well-understood case of the anomaly
of the (1þ 1)-dimensional chiral boson at the free fermion
radius. This theory naturally lives at the boundary of the
(2þ 1)-dimensional Uð1Þ Chern-Simons theory at level
k ¼ 1, for which the Euclidean action is −Sk¼1 ¼
πi

R ðA=2πÞðF=2πÞ [20,32,33]. The anomaly is then char-
acterized by the partition function of this Chern-Simons
theory on closed 3-dimensional manifolds M3.
Let us recall that the action at level 2, −Sk¼2 ¼

2πi
R ðA=2πÞðF=2πÞ, is well-defined modulo 2πi when

the manifold is oriented. However, there is a problem in
dividing it by two. To make the action Sk¼1 well-defined
modulo 2πi, it is known that we need to pick a spin
structure [34]. Once this is done, the path integral can be
performed explicitly because the theory is free. The details
are given, e.g., in [32,35–37]. Very roughly, we split the

gauge field A into a sum of the flat but topologically
nontrivial part and the topologically trivial but nonflat part.
Assuming, for simplicity, that flat connections on M3 are
isolated, we have

ZUð1ÞCSðM3Þ ¼
�Z

½DA�top:trivialeπi
R
ðA=2πÞðF=2πÞ

�

×

�X
A∶flat

eπi
R
ðA=2πÞðF=2πÞ

�
: ð1Þ

Let us rewrite its phase.
The phase of the first term can be written in terms of the

eta invariant of the signature operator �d:
1

2π
Arg

Z
½DA�top:trivialeπi

R
ðA=2πÞðF=2πÞ ¼ −

1

8
ηsignature: ð2Þ

Here and below, the equality of the phase is modulo one
and is simply denoted by the equal sign (¼). The phase of
the second term can be rewritten as

1

2π
Arg

X
c∈H2ðM3;ZÞ

qðcÞ≕ArfðqÞ; ð3Þ

where c ¼ c1ðFÞ is the first Chern class of the gauge

bundle, and qðcÞ ≔ eπi
R
ðA=2πÞðF=2πÞ.

We note that qðcÞ is simply the exponentiated level-1
classical action evaluated at a flat A. As recalled above,
defining it requires something more than an oriented
manifold and the integration on it. Mathematically, q is
known as a quadratic refinement of the torsion pairing on
H2ðM3;ZÞ. The Arf invariant ArfðqÞ is defined by the
equation above and is known to take values in one eighth of
an integer. We end up with the formula

1

2π
ArgZUð1ÞCSðM3Þ ¼ −

1

8
ηsignature þ ArfðqÞ: ð4Þ

Let us now recall that a chiral boson can be fermionized.
Then, the bulk theory can be taken to be the (2þ 1)-
dimensional fermion with infinite mass, for which the
partition function has the phase [38]

1

2π
ArgZfermionðM3Þ ¼ ηfermion: ð5Þ

The values of ηsignature and ηfermion on lens spaces are known
in the literature, e.g., [39]. For example, on M3 ¼ S3=Z2,
ηsignature ¼ 0; whereas ArfðqÞ and ηfermion can be either 1=8
or −1=8, depending on the spin structure. OnM3 ¼ S3=Z3,
ηsignature ¼ 2=9, ArfðqÞ ¼ 1=4, and ηfermion ¼ 2=9 because
there is a unique spin structure. We indeed confirm

−
1

8
ηsignature þ ArfðqÞ ¼ ηfermion; ð6Þ
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which can be proved using a mathematical result [40]. We
note that ηsignature is independent of the spin structure but
ArfðqÞ does depend on the spin structure. In other words,
the spin structure provides us the quadratic refinement.
The anomaly of the Maxwell theory.—The analysis

of the anomaly of the (1þ 1)-dimensional chiral boson
we recalled above was generalized to the [ð4n − 3Þ þ 1]-
dimensional self-dual form fields in [41] at the perturbative
level. The study of the corresponding [ð4n − 2Þ þ 1]-
dimensional theory in the bulk, generalizing the (2þ 1)-
dimensional Chern-Simons theory, was carried out in
detail in [21–26]. The bulk theory has the action
−S ¼ πi

R ðA=2πÞdðA=2πÞ, where A is now a (2n − 1)-
form gauge field. Assuming H2n−1ðM4n−1;RÞ ¼ 0, the
phase of the partition function still has the form of
Eq. (4), where q is now a quadratic refinement of the
torsion pairing on H2nðM4n−1;ZÞ, and its choice is not
obviously related to the choice of the spin structure.
Here, we are more interested in the (3þ 1)-dimensional

Maxwell theory. The natural generalization in this case is to
consider the bulk theory with the action

−S ¼ πi
Z ��

B
2π

�
d
�
C
2π

�
−
�
C
2π

�
d
�
B
2π

��
;

where B and C are two 2-form gauge fields to be path
integrated over [14]. This action has the SLð2;ZÞ sym-
metry acting on ðB;CÞ, which corresponds to the duality
symmetry of the Maxwell theory [14]. We can and will
introduce the background gauge field ρ for this SLð2;ZÞ
symmetry, which means that there is a nontrivial duality
transformation when going around a nontrivial loop in
spacetime. The phase of the partition function is then

1

2π
ArgZBdCðM5Þ ¼ −

1

4
ηsignature þ ArfðqÞ ð7Þ

where the eta invariant is now for the signature operator �d
acting on the differential forms tensored with ðZ2Þρ, and q
is now the quadratic refinement of the natural torsion
pairing on H3(M5; ðZ2Þρ). Here, ðZ2Þρ signifies the
coefficient system twisted by the SLð2;ZÞ bundle ρ. The
eta invariant of the signature operator with such a twist and
its reduction from higher dimensions were considered
earlier in the mathematical literature; see, e.g., [42].
Let us first consider the case where we do not have the

SLð2;ZÞ background. In this case, the signature eta
invariant simply vanishes, and only the Arf invariant
contributes. Recall that a quadratic refinement is simply
the classical action evaluated on flat B and C. Then, a
general quadratic refinement can be written as

Z
B
2π

dC
2π

þ
Z

dB
2π

C
2π

þ
Z

B
2π

dC
2π

; ð8Þ

where B; C ∈ H2ðM5;R=2πZÞ are the background fields
for the electric and magnetic 1-form Uð1Þ symmetry of
the Maxwell theory [43], which we chose to be flat. Its
Arf invariant is computed to be

R ðB=2πÞβðC=2πÞ, where β
is the Bockstein homomorphism β∶ H2ðM5;R=ZÞ →
H3ðM5;ZÞ; the Bockstein homomorphism β can roughly
be regarded as the exterior derivative d when it acts on
torsion elements of cohomology groups. The end result
is that

1

2π
ArgZBdCðM5Þ ¼

Z �
B
2π

�
β

�
C
2π

�
: ð9Þ

This reproduces a known result. Indeed, the mixed
anomaly is known to be of the form

2πi
Z
M5

�
B
2π

�
d

�
C
2π

�
;

for which the mathematically precise formulation [44]
reduces to Eq. (9) when we only consider flat fields.
Furthermore, we can take B=2π ¼ C=2π ¼ w2, where w2

is the Stiefel-Whitney class of the spacetime, which is here
regarded as an element of H2ðM5;R=ZÞ by using
Z2 → R=Z. The Maxwell theory with this coupling is also
known as the all-fermion electrodynamics, and it has the
gravitational anomaly 2πi

R
w2βw2 ¼ πi

R
w2w3 [18,19].

Let us next consider the case when a nontrivial SLð2;ZÞ
background is present. We can choose the symmetry
structure on M5 to consider, such as spin × SLð2;ZÞ or
spin-Mpð2;ZÞ [≔ spin ×Z2

Mpð2;ZÞ], distinguished by
whether C2 ¼ þ1 or ¼ ð−1ÞF. Here, C ∈ SLð2;ZÞ is
the charge conjugation C∶ ðE;BÞ ↦ −ðE;BÞ, and the
metaplectic group Mpð2;ZÞ is the double cover of the
group SLð2;ZÞ. We will focus on the latter case in this
Letter because it has a natural connection to the (6þ 1)-
dimensional CdC theory on a spin seven manifold, as we
will see. Canonical examples of M5 associated with this
symmetry structure are S5=Zk, k ¼ 2; 3; 4, and 6, where
going around the generator of π1ðS5=ZkÞ ¼ Zk comes with
the duality action by an element g of order k in SLð2;ZÞ,
whereas S5=Zk is not spin for even k; it has a natural spin-
Z2k structure for any k by embedding S5=Zk ⊂ C3=Zk.
Then, we get the spin-Mpð2;ZÞ structure by embedding
Z2k ⊂ Mpð2;ZÞ. The results of explicit computations for
Eq. (7) are tabulated in Table I. When there are multiple
choices for g or q, we choose a particular one. Other
quadratic refinements correspond to different background
fields ðB; CÞ for electromagnetic 1-form symmetries.
When k ¼ 2, the relevant element in SLð2;ZÞ is just the

charge conjugation symmetry C. This case has the anomaly
ð1=2πÞArgZ ¼ 1=2 on S5=Z2. This is responsible for the
difference of 1=2 of the Ramond-Ramond (RR) charges of
the O3þ plane and the O3− plane in type-IIB string theory
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[45]. As explained in [46], for the consistency of the theory,
the fractional part of the RR charge must be exactly
negative of the anomaly of a D3 brane living on S5=Z2.
The background ðB; CÞ produced by O3� is such that only
the O3− leads to the anomaly of the Maxwell theory,
explaining the difference of the RR charges; we note
that the charge 1=4 of theO3þ plane was already explained
by the fermion anomaly [46]. We can also check that
the resulting ð1=2πÞArgZ for other k is exactly what
is necessary to reproduce the RR charge of the N ¼ 3
S-fold [47,48].
Let us now consider the infinitely massive fermions

encoding the anomaly of a (3þ 1)-dimensional Weyl
fermion of unit charge under Z2k, which was studied in
[49–51]. The corresponding eta invariants on S5=Zk are
also tabulated in Table I. We can check that the relation

−
1

4
ηsignature þ ArfðqÞ ¼ 56ηfermion ð10Þ

holds for the choices of the Arf invariants given in
Table I.
Why 56?—Relation (10) about the anomaly of the

Maxwell theory and 56 Weyl fermions in (3þ 1)
dimensions reminds us of the relation [Eq. (6)] about
the anomaly of a chiral boson and a chiral fermion in
(1þ 1) dimensions. In the latter case, the equality should
evidently hold because a chiral fermion can be bosonized
to a chiral boson in (1þ 1) dimensions. It also explained
how and why the spin structure could be used to define
the quadratic refinement necessary to formulate the
integrand of the Uð1Þ Chern-Simons theory. In (3þ 1)
dimensions, however, the Maxwell theory and 56 Weyl
fermions are two clearly different theories. What is
the relation? How and why does the spin (or, more
precisely, the spin-Z2k) structure provide the necessary
quadratic refinement? One explanation is provided,
somewhat surprisingly, by supersymmetric physics in
(5þ 1) dimensions.
Consider a self-dual tensor field in (5þ 1) dimensions.

Its dimensional reduction on T2 gives rise to the Maxwell
theory in (3þ 1) dimensions, geometrizing the SLð2;ZÞ
duality symmetry of the Maxwell theory. Correspondingly,
the (4þ 1)-dimensional BdC theory on M5 coupled to an

SLð2;ZÞ bundle is the dimensional reduction of the
(6þ 1)-dimensional CdC theory on M7, which is the T2

bundle over M5.
We now embed this theory of a self-dual tensor field into

the tensor branch of the E-string theory [29,30]. The E-
string theory is a (5þ 1)-dimensional theory realized in M
theory, with two continuous families of vacua. One family
of vacua is called the tensor branch, which describes anM5
brane close to the spacetime boundary ofM theory carrying
the E8 gauge symmetry [52,53]. On the tensor branch, the
low energy theory consists of the self-dual tensor field with
some additional fields. The other family of vacua is called
the Higgs branch, which describes an instanton of the E8

gauge symmetry. The instanton breaks E8 to E7, and it
produces some chiral fermions as zero modes of the
instanton. A nontrivial fact in M theory is that these two
families of vacua are continuously connected; anM5 brane
put on the spacetime boundary can become an E8 instanton.
The transition point is a strongly coupled conformal field
theory.
We start from the M5 brane close to the spacetime

boundary, and we transform it into an E8 instanton of
nonzero size. In this process, the low energy theory is
changed from that of the tensor branch, containing the self-
dual tensor field, into that of the Higgs branch, containing
28 ¼ 56=2 chiral fermions in (5þ 1) dimensions trans-
forming under the fundamental 56-dimensional represen-
tation of E7. Because this is a continuous process, the
anomaly at the start and the anomaly at the end should be
the same; previously, the same argument was used to
compute the anomaly polynomial of the E-string theory
in [54] (which reproduced earlier results in [55–57]), but
the same statement is true, even for the subtler anomalies
we are discussing now. There are also some additional
fields on the tensor and Higgs branches, but their anomalies
are manifestly the same on both sides, and so we can match
the anomaly of the self-dual tensor field and the 28 chiral
fermions.
Because one chiral fermion in (5þ 1) dimensions gives

rise to two chiral fermions in (3þ 1) dimensions, we
conclude that the anomaly of the Maxwell theory, formu-
lated as the T2 compactification of the (5þ 1)-dimensional
self-dual field with the trivial E8 background, should be
equal to that of the 56 Weyl fermions. See Fig. 1 for a
summary of what we have described.

TABLE I. Partition functions and related data on S5=Zk.

S5=Z2 S5=Z3 S5=Z4 S5=Z6

ηsignature 0 − 1
9

− 1
2

− 14
9

H3(M5; ðZ2Þρ) ðZ2Þ2 Z3 Z2 Z1

ArfðqÞ þ 1
2

− 1
4

þ 1
8

0
1
2πArgZ þ 1

2
− 2

9
þ 1

4
þ 7

18

ηfermion − 1
16

− 1
9

− 5
32

− 35
144

(5+1)D

(3+1)D Maxwell

Self-dual tensor
T 2

Tensor branch Higgs branch

28 fermions

56 fermions

E-string

continuous

deformation

FIG. 1. Maxwell to 56 fermions via E-string theory.
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If we turn on a nontrivial E7 background AE7
on the

fermion side, the data are translated on the self-dual tensor
side into the background 3-form field C, which couples to
the dynamical self-dual tensor field, which is basically
given by the Chern-Simons term constructed from AE7

.
When AE7

is flat, this determines a quadratic refinement
required to define the (6þ 1)-dimensional CdC theory. In
particular, the trivial E7 background, which is available on
any manifold, provides a canonical quadratic refinement for
the (6þ 1)-dimensional CdC theory; and this construction
only requires the spin structure. This point was already
essentially made in [58].
Because this explanation of Eq. (10) requires a lot of

information from string and M theories, it would be of
independent interest to check the equality [Eq. (10)] by a
direct analysis in (3þ 1) and (4þ 1) dimensions. To
translate the analysis in (5þ 1) dimensions to the study
of the Maxwell theory, we need to require that the T2

bundle over M5 specified by the SLð2;ZÞ background is
equipped with a spin structure. This means that the sym-
metry structure we consider is a spin-Mpð2;ZÞ structure.
According to the cobordism classification theorem [59–62],
the anomaly of any system with this symmetry is classified

by the dual of Ωspin-Mpð2;ZÞ
5 ¼ Z9 ⊕ Z32 ⊕ Z2, which is the

bordism group for closed 5-manifolds with spin-Mpð2;ZÞ
structures and is generated by S5=Z3, S5=Z4, and
½ðS5=Z4Þ0 þ 9ðS5=Z4Þ�, respectively, where ðS5=Z4Þ and
ðS5=Z4Þ0 both have the spin-Z8 structure coming from the
embedding S5=Z4 ⊂ C3=Z4 but with different actions ofZ4

given by diagði; i; i;�iÞ. We have not directly determined
which quadratic refinement comes from the trivial E7 field,
but we have checked that, for a suitable choice, we have the
equality [Eq. (10)] for each case, providing a strong check of
our identification [Eq. (10)].
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