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We use the planetary ephemeris INPOP17b to constrain the existence of a Yukawa suppression to the
Newtonian potential, generically associated with the graviton’s mass. We also give an interpretation of this
result for a specific case of fifth force framework. We find that the residuals for the Cassini spacecraft
significantly (90% C.L.) degrade for Compton wavelengths of the graviton smaller than 1.83 × 1013 km,
which correspond to a graviton mass bigger than 6.76 × 10−23 eV=c2. This limit is comparable in
magnitude to the one obtained by the LIGO-Virgo Collaboration in the radiative regime. We also use this
specific example to defend that constraints on alternative theories of gravity obtained from postfit residuals
may be generically overestimated.
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Introduction.—From a particle physics point of view,
general relativity can be thought of as a theory of a massless
spin-2 particle—hereafter named a graviton. From this
perspective, it is legitimate to investigate whether or not the
graviton could actually possess a mass—even if it is
minute. Such an eventuality has been scrutinized from a
theoretical point of view since the late 1930s, with the
pioneering work of Fierz and Pauli [1]. There is a wide set
of massive gravity theories that lead to various phenom-
enologies [2]. One of the generic predictions from several
models—although not all of them (in particular, usually not
for models prone to the Vainshtein mechanism [2])—is that
the usual 1=r falloff of the Newtonian potential acquires a
Yukawa suppression [2]. In the present Letter, we aim to
test this particular phenomenology, regardless of the
specificity of the theoretical model that produced it. For
more information on the status of current theoretical
models, we refer the reader to [2,3]. As a consequence,
we assume that the line element in space-time curved by a
spherical massive object at rest, at leading order in the
Newtonian regime, reads

ds2 ¼
�
−1þ 2GM

c2R
e−R=λg

�
c2dT2

þ
�
1þ 2GM

c2R
e−R=λg

�
dL2; ð1Þ

with dL2 ≡ dX2 þ dY2 þ dZ2, R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2 þ Z2

p
, and

λg is the Compton wavelength of the graviton—although
we will see that our constraints can be applied on a
wider range of massive and nonmassive gravity metrics.

Obviously, as long as λg is big enough, the gravitational
phenomenology in the Newtonian regime can be reduced to
one of general relativity in any given level of accuracy.
Another generic feature of many massive gravity theories

is that, if the graviton is massive, its dispersion relation may
be modified according to E2 ¼ p2c2 þm2

gc4 [2], such that
the speed of gravitational waves depends on its energy (or
frequency) v2g=c2¼c2p2=E2≃1−h2c2=ðλ2gE2Þ. Therefore,
the waveform of gravitational waves would be modified
during their propagation, while, at the same time, sources
of gravitational waves have been seen up to more than
1420 Mpc (at the 90% C.L.) [4]. As a consequence,
waveform match filtering can be used to constrain the
graviton mass from gravitational waves detections [5,6].
Combining bounds from several events in the catalog

GWTC-1 [4] leads to λg ≥ 2.6 × 1013 km [respectively,
mg ≤ 5.0 × 10−23 eV=c2 [4,7]—with the definition
mg ¼ h=ðcλgÞ] at the 90% C.L. (assuming that the graviton
mass affects the propagation only, and not the binaries
dynamics). It is important to keep in mind that this limit is
obtained in the radiative regime, while we focus here on the
Newtonian regime. Although, one could expect λg to have
the same value in both regimes for most massive gravity
theories, it may not be true for all massive gravity theories.
Therefore, both constraints should be considered independ-
ently from an agnostic point of view. See, e.g., [2] for a
review on the graviton mass constraints.
Direct constraints from the Solar System.—Twenty years

ago [5], and more recently [8], Will argued that Solar
System observations could be used to improve—or at least
be comparable with—the constraints on λg obtained from
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the LIGO-Virgo Collaboration—assuming that the param-
eters λg appearing in both the radiative and Newtonian
limits are the same. A graviton mass would indeed lead to a
modification of the perihelion advance of Solar System
bodies. Hence, based on current constraints on the peri-
helion advance of Mars—or on the post-Newtonian param-
eters γ and β—derived from Mars Reconnaissance Orbiter
(MRO) data, Will estimates that the graviton’s Compton
wavelength should be bigger than ð1.2 − 2.2Þ × 1014 km
(respectively, mg < ð5.6 − 10Þ × 10−24 eV=c2), depending
on the specific analysis. However, as an input for his
analysis, Will uses results based on the statistics of
residuals of the Solar System ephemerides that are per-
formed without including the effect of a massive graviton.
But various parameters of the ephemeris (e.g., masses,
semimajor axes, Compton parameter, etc.) are all more or
less correlated to λg (see Table I). Therefore, any signal
introduced by λg < þ∞—for instance, a modification of a
perihelion advance—can in part be reabsorbed during the
fit of other parameters that are correlated with the mass of
the graviton. (See Supplemental Material [9], which
includes Refs. [10–15]). This, we believe, necessarily leads
to a decrease of the constraining power of the ephemeris on
the graviton mass with respect to postfit estimates. As a
corollary, we believe that all analyses based solely on
postfit residuals tend to overestimate the constraints on
alternative theories of gravity due to the lack of information
on the correlations between the various parameters.
Eventually, we think that one cannot produce conservative
estimates of any parameter without going through thewhole
procedure of integrating the equations of motion and fitting
the parameterswith respect to actual observations—which is
the very raison d’être of the ephemeris INPOP.
INPOP (Intégrateur Numérique Planétaire de

l’Observatoire de Paris) [16] is a planetary ephemeris that
is built by integrating numerically the equations of motion
of the Solar System following the formulation of [17], and
by adjusting to Solar System observations such as lunar
laser ranging or space missions observations. In addition to
adjusting the astronomical intrinsic parameters, it can be
used to adjust parameters that encode deviations from

general relativity [18–21], such as λg. The latest released
version of INPOP, INPOP17a [22], benefits of an improved
modeling of the Earth-Moon system, as well as an update of
the observational sample used for the fit [21]—especially
including the latest Mars orbiter data. For this work we use
an extension of INPOP17a, called INPOP17b, fitted over
an extended sample of Messenger data up to the end of the
mission, provided by [23].
In the present Letter, our goal is to use the latest

planetary ephemeris INPOP17b in order to constrain a
hypothetical graviton mass directly at the level of the
numerical integration of the equations of motion and the
resulting adjusting procedure. By doing so, the various
correlations between the parameters are intrinsically
taken into account, such that we can deliver a conservative
constraint on the graviton mass from Solar System
observations—details about the global adjusting procedure
are given in Supplemental Material [9].
Modelization for Solar System phenomenology.—

Following Will [8], we develop perturbatively the potential
in terms of r=λg, such that the line element (1) now reads

ds2 ¼
�
−1þ 2GM

c2r

�
1þ 1

2

r2

λ2g

��
c2dt2

þ
�
1þ 2GM

c2r

�
1þ 1

2

r2

λ2g

��
dl2 þOðc−3λ−2g Þ; ð2Þ

albeit with a change of coordinate system (we assume that
the underlying theory of gravity is covariant, such that this
change of coordinates has no impact on the derivation of
the actual observables):

T ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GM

c2λg

q ; Xi ¼ xiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − GM

c2λg

q : ð3Þ

The change of coordinate system is meant to get rid of
the nonobservable constant terms that appear in the line
element of Eq. (1) after expanding in terms of λ−1g .
Considering a N-body system, the resulting additional
acceleration to incorporate in INPOP’s code is

δai ¼ 1

2

X
P

GMP

λ2g

xi − xiP
r

þOðλ−3g Þ; ð4Þ

where MP and xiP are, respectively, the mass and the
position of the gravitational source P. In what follows, we
make the standard assumption that the underlying theory is
such that light propagates along null geodesics [3]. From
the null condition ds2 ¼ 0 and Eq. (2), the resulting
additional Shapiro delay at the perturbative level reads

TABLE I. Examples of correlations between various IN-
POP17b parameters and the Compton wavelength λg. a, EMB
andM⊙ state for semimajor axes, the Earth-Moon barycenter and
the mass of the Sun, respectively.

λg a Mercury a Mars a Saturn a Venus a EMB GM⊙

λg 1 0.50 0.49 0.04 0.39 0.05 0.66
a Mercury � � � 1 0.21 0.001 0.97 0.82 0.96
a Mars � � � � � � 1 0.03 0.29 0.53 0.06
a Saturn � � � � � � � � � 1 0.003 0.02 0.01
a Venus � � � � � � � � � � � � 1 0.86 0.94
a EMB � � � � � � � � � � � � � � � 1 0.73
GM⊙ � � � � � � � � � � � � � � � � � � 1
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δTER ¼ 1

2

X
P

GMP

c3λ2g
½N⃗ERðR⃗PRRPR − R⃗PERPEÞ

þ b2P ln

�
RPR þ R⃗PRN⃗ER

RPE þ R⃗PEN⃗ER

��
þOðc−3λ−3g Þ; ð5Þ

where R⃗XY¼ x⃗Y− x⃗X, RXY ¼ jR⃗XY j, N⃗XY ¼ R⃗XY=RXY , and

bP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
PE − ðR⃗PEN⃗ERÞ2

q
. One can notice the correction to

the Shapiro delay scales as ðLc=λgÞ2 with respect to the
usual delay, where Lc is a characteristic distance of a given
geometrical configuration. Given the old acknowledged
constraint from Solar System observations on the graviton
mass (λg > 2.8 × 1012 km [5,8,24]), one deduces that the
correction from the Yukawa potential on the Shapiro delay
is negligible for past, current, and forthcoming radioscience
observations in the Solar System (however, note that the
scaling of the correction to the Shapiro delay illustrates
the breakdown of the λ−1g development in cases where the
characteristic distances involved are large with respect to
the Compton wavelength—as should be expected).
On the other hand, the fifth force formalism predicts an

additional Yukawa term to the Newtonian potential [25]

V ¼ Gm
r

ð1þ αe−r=λÞ ð6Þ

If we assume that λ ≫ r and α > 0, we can also expand the
Yukawa term, such that our result on λg can be transposed
to λ=

ffiffiffi
α

p
—although, one first has to rescale the gravita-

tional constant to G̃ ¼ Gð1þ αÞ, and then to make the
same coordinate change as in Eq. (3), but while substituting
λg with λ=α. Note that a fifth force is also one of the generic
features of several massive gravity theories [2].
Evaluation of the significance of the residuals

deterioration.—To give a confidence interval for λg, we
proceed as follows. For each value of λg, we perform a
global fit of all other parameters to observations using the
same data that for the reference solution INPOP17b—
therefore, for the same number of observations. After the
global fit procedure, we compute the residuals at the same
dates for the reference solutions and observe how they are
degraded or improved with respect to λg. The result is that
Cassini residuals are the first to degrade significantly while
λg decreases (see Supplemental Material [9] for details).
To quantify the statistical meaning of this degradation,

we perform a Pearson [26] χ2 test between both residuals in
order to look at the probability that they were both built
from the same distribution. To compute the χ2, we build an
optimal histogram with the Cassini residuals of INPOP17b
using the method described in [27], assuming the
Gaussianity of the distribution of the residuals. We deter-
mine the optimal bins in which are counted the residuals to
build the histogram. Then, using the same bins, we build an
histogram for the Cassini residuals obtained by the solution

to be tested with a given value of λg. Note that the first bin
left bound is −∞ and the last bin right bound is þ∞. Let
ðCiÞi be the bins in which are counted the values of the
residuals, and let NI

i , N
G
i be the number of residuals of

INPOP17b and the solution to be tested, respectively,
counted in bin number i. One can then compute

χ2ðλgÞ ¼
Xn
i¼1

ðNG
i − NI

iÞ2
NI

i
: ð7Þ

For Cassini data, it occurs that the optimal binning gives 10
bins. As a result, this χ2 follows a χ2 law with 10 degrees of
freedom. If the computed χ2 is then greater than its quantile
for a given confidence probability p, we can say that the
distribution of the residuals obtained for λg is different from
the residuals obtained by the reference solution with a
probability p. This test can be done for both a positive
detection of a physical effect and a rejection of the
existence of a physical effect. If the computed χ2ðλgÞ
becomes then greater than its critical value for a probability
p, one has to check if residuals are smaller or bigger than
those obtained by the reference solution. In the first case
(smaller—or better—residuals), it means that the added
effect increases significantly the quality of the residuals and
is probably (with a probability p) a true physical effect. On
the contrary, in the second case (bigger—or degraded—
residuals), it means that the added effect is probably

FIG. 1. Plot of χ2ðλgÞ and the constraints deduced for λg. The
probabilities p ¼ 90% and p ¼ 99.9999999% correspond to
critical values of χ2 equal to, respectively, 15.99 and 62.94.
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physically false. In our work, the critical increasing of
χ2ðλgÞ corresponds to a degradation of the residuals (see the
Supplemental Material [9] for a detailed analysis). The
massive graviton can then be rejected for high enough
values of the mass (or low enough values of λg).
Results.—In Fig. 1 we plot the χ2 as a function of λg.

In this plot, we give two values of quantiles associated to
two probabilities of significance, p ¼ 90% and p ¼
99.9999999%, which correspond to critical values of χ2

equal to 15.99 and 62.94, respectively, for a 10 degrees of
freedom χ2 distribution. We obtain respectively λg>1.83×
1013 km (respectively, mg<6.76×10−23 eV=c2) and λg >
1.66 × 1013 km (respectively, mg < 7.45 × 10−23 eV=c2).
These results are shown in Fig. 1. We also provide an
enlargement of the main figure in order to show that the χ2

is not monotonic for small differences of λg. However, if a
given limit is crossed several times, our algorithm auto-
matically takes the most conservative value in the discrete
set of λg, as can be seen in Fig. 1.
Conclusion.—In the present Letter, we deliver the

first conservative estimate of the graviton mass from an
actual fit of a combination of Solar System data using a
criterion based on a state of the art Solar System eph-
emerides: INPOP17b. The bound reads λg>1.83×1013 km
(respectively mg < 6.76 × 10−23 eV=c2) with a confidence
of 90% and λg > 1.66 × 1013 km (respectively, mg <
7.45×10−23 eV=c2) with a confidence of 99.999 999 9%.
As previously explained, in terms of a fifth force, the
constraint on λg can be translated into a constraint on λ=

ffiffiffi
α

p
,

simply by substituting λg by λ=
ffiffiffi
α

p
, if α > 0.

The fact that our 90% C.L. bound is comparable
in magnitude to the one obtained by the LIGO-Virgo
Collaboration in the radiative regime [7,28] is a pure
coincidence: the two bounds rely on totally different types
of observation—gravitational waves versus radioscience in
the Solar System—and probe different aspects of the
massive graviton phenomenology—radiative versus orbital.
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