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Quantum droplets may form out of a gaseous Bose-Einstein condensate, stabilized by quantum
fluctuations beyond mean field. Determining the ground state of a rotating binary condensate, we show that
multiple singly quantized vortices may form in these droplets at moderate angular momenta in two
dimensions. Droplets carrying these precursors of an Abrikosov lattice remain self-bound for certain
timescales after switching off an initial harmonic confinement. Intriguingly, we find evidence of a
metastable persistent current in these new types of binary condensates. We discuss how this finding can be
used to experimentally generate vortex-carrying quantum droplets.
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The formation of self-bound droplets is a well-known
macroscopic phenomenon. For an exemplary droplet of
water, stability and shape rely on the balance of effective
forces between its constituent particles—attractive ones
that keep it together, and repulsive ones that prevent it from
collapse. Their interplay defines the droplets’ surface
tension, stabilizing the system in a metastable state.
Such droplets do not only occur at a macroscopic level,
but are ubiquitous also in the quantum realm, where nuclei
[1] and superfluid helium droplets [2–4] are prominent
examples. While these are rather dense and strongly
interacting many-body systems, recent experiments with
ultracold quantum gases of bosonic atoms uncovered a
novel type of quantum liquid: Self-bound droplets may
form out of a gaseous Bose-Einstein condensate (BEC) of
dysprosium [5–9] or erbium [10], atomic species that are
known for their strong dipolar interactions [11–13]. Similar
droplet states have more recently also been realized with
binary Bose gases of potassium in different hyperfine states
[14,15], where the inter- and intracomponent interactions
are short ranged. These quantum droplets can be large,
containing thousands of atoms. Importantly, they are very
dilute—by more than 8 orders of magnitude when com-
pared with liquid helium [14]. While the discovery with
dysprosium [5–7] at first came as a surprise, the binary self-
bound droplet states were theoretically predicted a year
before [16] for a scenario similar to the experiments with
potassium, and also in lower dimensions [17]. That higher-
order corrections beyond mean field may lead to self-bound
states was discussed earlier in a different setting in
Refs. [18,19]. For the dipolar or binary self-bound bosonic
systems of Refs. [5–7,14,15] the physical mechanism of
droplet formation is based on tuning the interactions in the
gas such that only a weak effective attraction remains.
While in pure mean field this would lead to a collapse of
the system, weak first-order corrections to the mean field

energy, often referred to as the Lee-Huang-Yang (LHY)
correction [20], can become comparable in size and may
thus stabilize the system.
Bound states that are merely a consequence of quantum

corrections beyond mean field have been known since long
from alkali-metallic clusters [21,22], where the jellium of
the ionic charge background cancels the electronic Hartree
term, resulting in a liquidlike electronic state bound mainly
due to a balance between kinetic and exchange-correlation
energy [23]. The fact that self-bound bosonic droplets can
form with atoms as intrinsically different as lanthanides and
alkali metals shows that this phenomenon for ultra-cold
gases is a general one, giving evidence for a novel state of
quantum matter with new and unexpected properties the
exploration of which is yet “at its infancy” (see the recent
focus article [24]).
In atomic quantum droplets the effective interactions

between the constituent bosonic atoms are relatively weak.
This eases their theoretical description, making it largely
accessible to lowest-order corrections beyond mean field
[16]. On the theoretical side, progress has been made in the
framework of the extended Gross-Pitaevskii approach
[10,25–31] where the LHY correction as well as atom
losses are added to the nonlinear Schrödinger equation
in an efficient ad hoc manner, by quantum Monte Carlo
approaches [32–35], or by solving the Bogoliubov–
de Gennes equations [28,29].
As these droplets form out of a BEC there is good reason

to assume that they have superfluid properties. One of
the signatures of superfluidity are vortices—topologically
nontrivial states well known from harmonically trapped
BECs (see, e.g., Refs. [36–44] or the reviews [45,46]),
characterized by a depletion of the density accompanied
by a phase shift. So far, however, experimental evidence
for vortices in these droplets appears elusive. Only a
few theoretical works yet considered the LHY-stabilized
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quantum droplets’ rotational properties. Very recent work
found metastable necklacelike clustered droplets carrying
angular momentum [47]. Stationary states with a singly
quantized vortex were discussed for a prolate dipolar
droplet that under time evolution can split into two smaller
droplet fragments [48,49]. A similar fragment formation
was also reported for binary droplets in both two [50] and
three dimensions, in the latter case carrying up to two units
of angular momentum in a region of experimentally
accessible parameters [51]. A doubly quantized vortex
was found to decay into two singly quantized vortices
upon a quadrupolar deformation [52]. In the above studies,
the vorticity was imprinted on the droplet by a phase factor
of the initial state.
In this Letter we demonstrate in a novel way the ubiquity

of vortices in quantum droplets carrying angular momen-
tum. Instead of relying on the method of imprinting
vorticity, here the ground state of a rotating trapped binary
BEC is studied. We find that metastable vortex clusters
may form after a sufficiently slow release from a weakly
confining trap. We find that these droplets carry angular
momentum by forming multiple singly quantized vortices
along with rigid-body rotation, in contrast to the imprinted
single multiply quantized vortex solutions previously found
in the literature. We show that intriguingly, these LHY-
amended condensates may support a metastable persistent
current, and suggest how this phenomenon can be used in
order to experimentally realize self-bound vortex droplets.
Let us now consider a species-symmetric binary BEC

confined to two dimensions [17] that is interacting weakly
via short-range interactions, where the inter- and intra-
species interactions are assumed to be attractive and
repulsive, respectively. For such a binary BEC with equal
masses of the atoms in the two components, the coupled
Gross-Pitaevskii equations reduce to that of a one-
component BEC with an accordingly modified interaction
term [16,17]. We initially confine the gas in a harmonic trap
with an added Gaussian at the trap center. The extended
Gross-Pitaevskii equation for such a system in a frame
rotating with angular frequency Ω can then be written as

i
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2
∇2 þ 1

2
ω2r2 þ V0e−ðr=a⊥Þ

2

þ jψ j2 ln jψ j2 − iK3jψ j4 −ΩLz

�
ψ ; ð1Þ

where the scaling invariances of the system have been used
to bring the equation into this dimensionless form. Here ω
is the harmonic trapping frequency, V0 the amplitude of the
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and the angular momentum L ¼ R
d2rψ�Lzψ . Equation (1)

is solved with the usual split-step Fourier method [53] in
real and imaginary time. For the imaginary time propaga-
tion we use a set of different randomly perturbed initial
conditions in order to avoid local minima in the energy
landscape.
We first look for the ground state of free droplets in a

rotating frame, but before convergence can be reached, the
droplets are found to decay to fragments similar to those in
the three-dimensional case [51]. As a first remedy to these
inherently unstable solutions, we add a weak stabilizing
harmonic confinement to the system. The dimensionless
parameters considered here to illustrate our findings are
N ¼ 1000 and ω ¼ 0.04. For these values the correspond-
ing free droplet has the characteristic flat-top shape
[16,17,30,31,50], and the trapping frequency is sufficiently
weak to keep the droplet at a density close to its (free)
equilibrium value. We first of all consider a purely
harmonic trap (V0 ¼ 0) and identify the rotational ground
states at distinct rotation frequencies Ω. The density
distributions for some ground states at different Ω are
shown in the leftmost column of Fig. 1. Clearly, with

FIG. 1. Time evolution of various rotational ground state
densities in a harmonic trap (V0 ¼ 0) at different rotation
frequencies for N ¼ 1000, ω ¼ 0.04, and K3 ¼ 0 (i.e., no
three-body losses). The harmonic trap frequency is linearly
decreased in time such that it is zero at t ¼ 100. See the
Supplemental Material [54] for movies of the full time evolution
of the densities.
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increased rotation, vortices are induced in a way similar to
that of a one-component condensate, proceeding from the
formation of a unit vortex at the trap center, to two- and
three-vortex states with the usual two- and threefold
symmetries. Figure 2 shows the ground state energy in
the rotating frame E − ΩL and the corresponding angular
momentum as a function of the trap rotation. The first three
steps in L, corresponding to kinks in the rotational energy,
are seen for L=N ≈ 1.0, 1.8, and 2.5 for the first three vortex
states shown in Fig. 1 similarly to scalar BECs [36,40].
Instead of minimizing the energy by solving Eq. (1) for

fixedΩ, one may instead study the energy at a fixed angular
momentum by minimizing the dimensionless quantity Ẽ ¼
Eþ CðL − L0Þ2 [55], where C and L0 are dimensionless
constants. Ẽ has a minimum at L ¼ L0 − E0=ð2CÞ provided
the curvature Ẽ00 ¼ E00 þ 2C is positive, which is the case
when C is a sufficiently large number compared to E00.
Furthermore, when C is much larger than E0, the minimum
occurs at L ≈ L0 with Ẽ ≈ E, making it possible to obtain
solutions for states that are not rotational ground states, i.e.,
for arbitrary L.
The dispersion relation obtained in this way is displayed

in Fig. 3 for angular momenta up to and beyond the unit
vortex that nucleates at the trap center at L=N ¼ 1.0. At this
value, for V0 ¼ 0, the energy has a kink, which can turn

into an energetic minimum in the rotating frame when the
energy E −ΩL is tilted downwards by a constant slope,
resulting in the first step in L when solving Eq. (1) for a
corresponding value of Ω; see Fig. 2. For higher vortex
numbers the mechanism is similar, with kinks in E leading
to the plateaus in L for certain values of Ω. In the absence
of three-body losses, K3 ¼ 0, Eq. (1) conserves angular
momentum. This implies that a condensate in a unit vortex
ground state in the rotating frame will remain so even after
the rotation ceases by virtue of this conservation law.
However, since there is no local minimum in the dispersion
relation for the purely harmonic case, this state is suscep-
tible to small perturbations. It will thus slide down in
energy to the nonrotating ground state. Let us next consider
a nonmonotonic trapping potential by adding a Gaussian to
the center of the harmonic trap (as has been realized
experimentally; see, e.g., Ref. [56]). Trapping potentials
of this kind have been shown to cause local minima in the
dispersion relation for scalar BECs [57]. The energy as a
function of angular momentum for V0 ¼ 0.2 shown in
Fig. 3 confirms that this is also the case for this binary
system. Such a mexican-hat type of confinement can thus
support a metastable persistent current even in the presence
of weak perturbations. The energy in the rotating frame
and the corresponding angular momentum as a function of
rotation frequency with this central Gaussian is shown
in Fig. 2.
Since we are interested in rotational properties of self-

bound condensates, we now imagine a scenario where the
ground state at a particular rotation frequency is maintained
even after the trap rotation has stopped (as could be realistic
in an experimental setting when there exists a local
minimum in the dispersion relation). The condensate is
then released from the trap by decreasing ω linearly in time

FIG. 2. Upper panel: Ground state energy in the rotating frame
as a function of rotation frequency for N ¼ 1000 and ω ¼ 0.04,
in a harmonic trap (V0 ¼ 0, light blue) and with a Gaussian added
at the center (V0 ¼ 0.2, dark blue). Both curves are plotted
against the energy of their respective nonrotating ground state E0.
Lower panel: Angular momentum as a function of rotation
frequency for the same parameters. Distinct kinks in the energy
correspond to an increase in the number of singly quantized
vortices (green numbers) displayed as steps in the angular
momentum shown in the lower panel.

FIG. 3. Energy as a function of angular momentum for N ¼
1000 and ω ¼ 0.04, in a harmonic trap (V0 ¼ 0, light blue) and
with a Gaussian added at the trap center (V0 ¼ 0.2, dark blue), as
in Fig. 2. Both curves are plotted against the energy of their
respective nonrotating ground state E0.
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until ω ¼ 0 in order to reduce the radial velocity that results
from the expansion. The real time propagation for the
purely harmonic case is shown in Fig. 1. Intriguingly, in
this ideal case where conservation laws are intact, the
droplets stay stable even after the trap is fully turned off
while still carrying angular momentum in the form of
vortices and rigid-body rotation. Additionally, the shape
of the droplets is deformed according to the number of
vortices. For a condensate in a trap with the Gaussian
discussed previously, we consider a similar release, but now
leaving the Gaussian even after the harmonic trap is turned
off. Density contours and phases for the release of zero- and
unit-vortex states in such a setup are displayed in Fig. 4,
where we have also included a comparison with the
corresponding systems including three-body losses with
K3 ¼ 0.01. For both the cases with and without a vortex,
the droplet is pinned to the remaining Gaussian, and they
stay metastable and self-bound even when the symmetry-
breaking three-body losses term is present.
In order to relate our results to experimental values, let

us consider 39K atoms tightly confined by a harmonic trap
in the transversal direction with an oscillator length
lz ¼ 0.1 μm, and three dimensional s-wave scattering
lengths equal to a↑↓ ¼ −50.0a0 and a ¼ 50.5a0 for the
inter- and intraspecies interactions, respectively (a0 is the
Bohr radius). Note that these values for the scattering
lengths correspond to the stable gas phase in three

dimensions [14]; the liquefaction is due to the transition
to two dimensions [17]. This choice, when transformed
from the dimensionless parameters used above, corresponds
roughly to ω ∼ 10 Hz, N ∼ 105, and n ∼ 1014 cm−3, with
units of time and space in ∼ms and ∼μm, respectively [58].
Thevalue used for the three-body losses inFig. 4 corresponds
approximately to 10−27 cm6=s.
Moreover, we see that 1=j ln n2Da22Dj ≪ 1 [where n2D

is the two-dimensional density and a2D ¼ lz

ffiffiffiffiffiffiffiffiffiffiffiffiðπ=BÞp
expð− ffiffiffiffiffiffiffiffi

π=2
p

lz=aÞ, with B ≈ 0.905, for a transversal har-
monic trapping [58] ], which puts us in a regime where
beyond-mean-field predictions are valid for two dimen-
sions [59]. The requirement for a quasi-2D system
4nal2

z=π ≲ 0.03 established in Ref. [60] is also met.
It should be noted, however, that both of these results
were derived for a system confined transversally by a box
with periodic boundary conditions and not for a harmonic
oscillator.
In conclusion, we have shown that binary self-bound

bosonic droplets as realized in recent experiments with
potassium [14,15] exhibit the formation of singly quantized
vortices in a way similar to scalar BECs with weak short-
range interactions, but with the addition of a deformation to
the droplets’ shape. In order to stabilize these droplets and
prevent their decay into fragments (such as they were found
both in two and three dimensions; see Refs. [50,51]), we
found that it is crucial to first stabilize the droplets by a
weak harmonic confinement, chosen such that it barely
confines the self-bound droplet. When switching off the
trap rotation and slowly releasing the droplet, cusps in the
dispersion relation EðLÞ lead to rotational ground states
that can generate rotating droplets containing multiple
singly quantized vortices. To study a more perturbation-
resistant system, we considered a binary BEC trapped in a
mexican-hat potential, where we found the existence of a
metastable persistent current that potentially could be
utilized in order to produce droplets carrying angular
momentum in the form of vortices. The findings presented
here should be in the range of present experiments for
binary condensates. We expect that similar metastable
persistent currents may occur in dipolar quantum droplets.
While the present analysis made use of the two-dimensional
extended Gross-Pitaevskii approach [17], it will also be
interesting to study the crossover between two and three
dimensions [59,60] from the perspective of vortex formation.
Persistent currents, as here newly found in these binary

condensates, have earlier been experimentally realized for
ring-trapped BECs in Ref. [61], pointing out their impor-
tance for future atomtronics applications. Ring-shaped
BECs have recently even been used to mimic the redshift
effect [62]. The latter experiments were concerned with
rapid expansion; however, an intriguing opportunity is
similar investigations with a self-bound LHY ring carrying
a persistent current, as here analyzed in the adiabatic limit.
Likewise, ring-shaped waveguides recently showed a new

FIG. 4. Phases and superimposed density contours of the time
evolution of ground states with zero or one vortex in a harmonic
trap with a Gaussian (V0 ¼ 0.2) for N ¼ 1000 and ω ¼ 0.04.
Rows one and three show evolutions without three-body losses
K3 ¼ 0, and rows two and four with K3 ¼ 0.01. The harmonic
trap frequency is linearly decreased in time such that it is zero at
t ¼ 100 while leaving the Gaussian unchanged. See the Supple-
mental Material [54] for movies of the full time evolution of the
densities.
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pathway towards guided matter-wave interferometry [63],
for which persistent currents in LHY gases open up many
new perspectives.

We thank in particular G. Kavoulakis for his help and
useful comments at the initial stage of the project. We also
thank J. Bengtsson, J. Bjerlin, D. Boholm, G. Eriksson, B.
Mottelson, and R. Sachdeva for discussions. This work is
financially supported by The Swedish Research Council
and the Knut and Alice Wallenberg Foundation.

[1] A. Bohr and B. Mottelson, Nuclear Structure, Nuclear
Structure No. Vol. 1 (World Scientific, Singapore, 1998).

[2] R. Donelly, Quantized Vortices in Helium II (Cambridge
University Press, Cambridge, England, 1991), Vol. 3.

[3] J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43,
2622 (2004).

[4] F. Ancilotto, M. Barranco, and M. Pi, Phys. Rev. B 97,
184515 (2018).

[5] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I.
Ferrier-Barbut, and T. Pfau, Nature (London) 530, 194
(2016).

[6] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and
T. Pfau, Nature (London) 539, 259 (2016).

[7] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and
T. Pfau, Phys. Rev. Lett. 116, 215301 (2016).

[8] I. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T.
Pfau, J. Phys. B 49, 214004 (2016).

[9] I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen, M.
Isoard, S. Stringari, and T. Pfau, Phys. Rev. Lett. 120,
160402 (2018).

[10] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L.
Santos, and F. Ferlaino, Phys. Rev. X 6, 041039 (2016).

[11] M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 104,
063001 (2010).

[12] M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev.
Lett. 107, 190401 (2011).

[13] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R.
Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 210401
(2012).

[14] C. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P.
Cheiney, and L. Tarruell, Science 359, 301 (2018).

[15] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L.
Wolswijk, F. Minardi, M. Modugno, G. Modugno, M.
Inguscio, and M. Fattori, Phys. Rev. Lett. 120, 235301
(2018).

[16] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
[17] D. S. Petrov and G. E. Astrakharchik, Phys. Rev. Lett. 117,

100401 (2016).
[18] A. Bulgac, Phys. Rev. Lett. 89, 050402 (2002).
[19] H.-W. Hammer and D. T. Son, Phys. Rev. Lett. 93, 250408

(2004).
[20] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

(1957).
[21] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders,

M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52, 2141
(1984).

[22] H. Nishioka, K. Hansen, and B. R. Mottelson, Phys. Rev. B
42, 9377 (1990).

[23] M. Koskinen, P. O. Lipas, and M. Manninen, Z. Phys. D 35,
285 (1995).

[24] I. Ferrier-Barbut, Phys. Today 72, No. 4, 46 (2019).
[25] D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie,

Phys. Rev. A 94, 021602(R) (2016).
[26] F. Wächtler and L. Santos, Phys. Rev. A 93, 061603(R)

(2016).
[27] F. Wächtler and L. Santos, Phys. Rev. A 94, 043618

(2016).
[28] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie,

Phys. Rev. A 94, 033619 (2016).
[29] D. Baillie, R. M. Wilson, and P. B. Blakie, Phys. Rev. Lett.

119, 255302 (2017).
[30] A. Boudjemâa, Phys. Rev. A 97, 033627 (2018).
[31] A. Boudjemâa, Phys. Rev. A 98, 033612 (2018).
[32] H. Saito, J. Phys. Soc. Jpn. 85, 053001 (2016).
[33] A. Macia, J. Sánchez-Baena, J. Boronat, and F. Mazzanti,

Phys. Rev. Lett. 117, 205301 (2016).
[34] F. Cinti, A. Cappellaro, L. Salasnich, and T. Macrì, Phys.

Rev. Lett. 119, 215302 (2017).
[35] V. Cikojević, K. Dželalija, P. Stipanović, L. VranješMarkić,

and J. Boronat, Phys. Rev. B 97, 140502(R) (2018).
[36] D. A. Butts and D. S. Rokhsar, Nature (London) 397, 327

(1999).
[37] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall,

C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498
(1999).

[38] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Phys. Rev. Lett. 84, 806 (2000).

[39] F. Chevy, K. W. Madison, and J. Dalibard, Phys. Rev. Lett.
85, 2223 (2000).

[40] G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, Phys.
Rev. A 62, 063605 (2000).

[41] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle,
Science 292, 476 (2001).

[42] C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W.
Ketterle, Phys. Rev. Lett. 87, 210402 (2001).

[43] K.W. Madison, F. Chevy, V. Bretin, and J. Dalibard, Phys.
Rev. Lett. 86, 4443 (2001).

[44] P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell,
Phys. Rev. Lett. 87, 210403 (2001).

[45] A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
[46] H. Saarikoski, S. M. Reimann, A. Harju, and M. Manninen,

Rev. Mod. Phys. 82, 2785 (2010).
[47] Y. V. Kartashov, B. A. Malomed, and L. Torner, Phys. Rev.

Lett. 122, 193902 (2019).
[48] A. Cidrim, F. E. A. dos Santos, E. A. L. Henn, and T. Macrì,

Phys. Rev. A 98, 023618 (2018).
[49] A.-C. Lee, D. Baillie, R. N. Bisset, and P. B. Blakie, Phys.

Rev. A 98, 063620 (2018).
[50] Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and

B. A. Malomed, Phys. Rev. A 98, 063602 (2018).
[51] Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner,

Phys. Rev. A 98, 013612 (2018).
[52] F. Ancilotto, M. Barranco, M. Guilleumas, and M. Pi, Phys.

Rev. A 98, 053623 (2018).
[53] S. A. Chin and E. Krotscheck, Phys. Rev. E 72, 036705

(2005).

PHYSICAL REVIEW LETTERS 123, 160405 (2019)

160405-5

https://doi.org/10.1002/anie.200300611
https://doi.org/10.1002/anie.200300611
https://doi.org/10.1103/PhysRevB.97.184515
https://doi.org/10.1103/PhysRevB.97.184515
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1088/0953-4075/49/21/214004
https://doi.org/10.1103/PhysRevLett.120.160402
https://doi.org/10.1103/PhysRevLett.120.160402
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevLett.104.063001
https://doi.org/10.1103/PhysRevLett.104.063001
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1103/PhysRevLett.120.235301
https://doi.org/10.1103/PhysRevLett.120.235301
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.89.050402
https://doi.org/10.1103/PhysRevLett.93.250408
https://doi.org/10.1103/PhysRevLett.93.250408
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRevLett.52.2141
https://doi.org/10.1103/PhysRevLett.52.2141
https://doi.org/10.1103/PhysRevB.42.9377
https://doi.org/10.1103/PhysRevB.42.9377
https://doi.org/10.1007/BF01745532
https://doi.org/10.1007/BF01745532
https://doi.org/10.1063/PT.3.4184
https://doi.org/10.1103/PhysRevA.94.021602
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevLett.119.255302
https://doi.org/10.1103/PhysRevLett.119.255302
https://doi.org/10.1103/PhysRevA.97.033627
https://doi.org/10.1103/PhysRevA.98.033612
https://doi.org/10.7566/JPSJ.85.053001
https://doi.org/10.1103/PhysRevLett.117.205301
https://doi.org/10.1103/PhysRevLett.119.215302
https://doi.org/10.1103/PhysRevLett.119.215302
https://doi.org/10.1103/PhysRevB.97.140502
https://doi.org/10.1038/16865
https://doi.org/10.1038/16865
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.85.2223
https://doi.org/10.1103/PhysRevLett.85.2223
https://doi.org/10.1103/PhysRevA.62.063605
https://doi.org/10.1103/PhysRevA.62.063605
https://doi.org/10.1126/science.1060182
https://doi.org/10.1103/PhysRevLett.87.210402
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.87.210403
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.82.2785
https://doi.org/10.1103/PhysRevLett.122.193902
https://doi.org/10.1103/PhysRevLett.122.193902
https://doi.org/10.1103/PhysRevA.98.023618
https://doi.org/10.1103/PhysRevA.98.063620
https://doi.org/10.1103/PhysRevA.98.063620
https://doi.org/10.1103/PhysRevA.98.063602
https://doi.org/10.1103/PhysRevA.98.013612
https://doi.org/10.1103/PhysRevA.98.053623
https://doi.org/10.1103/PhysRevA.98.053623
https://doi.org/10.1103/PhysRevE.72.036705
https://doi.org/10.1103/PhysRevE.72.036705


[54] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.160405 for movies
showing the full time evolution for the results shown in Fig. 1.

[55] S. Komineas, N. R. Cooper, and N. Papanicolaou, Phys.
Rev. A 72, 053624 (2005).

[56] V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev.
Lett. 92, 050403 (2004).

[57] K. Kärkkäinen, J. Christensson, G. Reinisch, G. M.
Kavoulakis, and S. M. Reimann, Phys. Rev. A 76,
043627 (2007).

[58] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64,
012706 (2001).

[59] T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler,
Phys. Rev. A 98, 051604(R) (2018).

[60] P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek,
Phys. Rev. A 98, 051603(R) (2018).

[61] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W.
Clark, C. J. Lobb, W. D. Phillips, M. Edwards, and G. K.
Campbell, Nature (London) 506, 200 (2014).

[62] S. Eckel, A. Kumar, T. Jacobson, I. B. Spielman, and G. K.
Campbell, Phys. Rev. X 8, 021021 (2018).

[63] S. Pandey, H. Mas, G. Drougakis, P. Thekkeppatt, V.
Bolpasi, G. Vasilakis, K. Poulios, and W. von Klitzing,
Nature (London) 570, 205 (2019).

PHYSICAL REVIEW LETTERS 123, 160405 (2019)

160405-6

http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.160405
https://doi.org/10.1103/PhysRevA.72.053624
https://doi.org/10.1103/PhysRevA.72.053624
https://doi.org/10.1103/PhysRevLett.92.050403
https://doi.org/10.1103/PhysRevLett.92.050403
https://doi.org/10.1103/PhysRevA.76.043627
https://doi.org/10.1103/PhysRevA.76.043627
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevA.98.051604
https://doi.org/10.1103/PhysRevA.98.051603
https://doi.org/10.1038/nature12958
https://doi.org/10.1103/PhysRevX.8.021021
https://doi.org/10.1038/s41586-019-1273-5

