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Motivated by the recent achievement of space-based Bose-Einstein condensates (BEC) with ultracold
alkali-metal atoms under microgravity and by the proposal of bubble traps which confine atoms on a thin
shell, we investigate the BEC thermodynamics on the surface of a sphere. We determine analytically the
critical temperature and the condensate fraction of a noninteracting Bose gas. Then we consider the
inclusion of a zero-range interatomic potential, extending the noninteracting results at zero and finite
temperature. Both in the noninteracting and interacting cases the crucial role of the finite radius of the
sphere is emphasized, showing that in the limit of infinite radius one recovers the familiar two-dimensional
results. We also investigate the Berezinski-Kosterlitz-Thouless transition driven by vortical configurations
on the surface of the sphere, analyzing the interplay of condensation and superfluidity in this finite-size
system.
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Introduction.—From the theoretical prediction in a series
of articles of Bose [1] and Einstein [2,3], to its experimental
achievement in 1995 [4,5], the paradigm of Bose-Einstein
condensation (BEC) guided and marked the development
of a large part of modern physics. Despite the fact that a
huge variety of phenomena emerges from the combination
of different trapped configurations and a tunable interaction
strength [6], some basic analytical problems of fascinating
beauty are currently unexplored. Among them is the
condensation of a bosonic gas of ultracold atoms confined
on the surface of a sphere. Our theoretical study of this
system is triggered by the experimental possibility to
confine the atoms on a spherically symmetric bubble trap
[7], and by zero-temperature computational works [8–10]
on the same topic. This configuration is produced by a radio
frequency dressing of the atoms, which allows us to engineer
a large variety of radial configurations [9,11–14]. However, a
spherical atom distribution cannot be observed in conven-
tional experiments since the atoms fall in the bottom of the
trap due to gravitational effects [15]. Until now, many
experiments with BEC have been carried on in microgravity
settings [16–18], and bubble trap experiments in micro-
gravity are planned for an orbiting cold atom laboratory
inside the International Space Station [19–22]. It is thus
pressing to obtain analytical results for these systems, whose
better understanding would offer an efficient benchmark
for precise atom interferometry, improved description of
compact stars [23], and fundamental physics testing [24].
Here we calculate the critical temperature for a BEC of
noninteracting bosons confined on the surface of a sphere

and we derive an expression for their condensate fraction
as a function of the temperature. Then we consider the
addition of a zero-range two-body interaction. Within a
functional integration approach we extend the noninteract-
ing results in a Gaussian (one-loop) approximation. Despite
a different topology with respect to a planar condensate,
it is expected that a thin spherical shell undergoes the
Berezinski-Kosterilitz-Thouless (BKT) transition [25,26].
We investigate the relationship between BEC and BKT,
whose understanding is of general interest for any super-
fluid system on a curved surface described by an angle-
valued field [27].
Noninteracting Bose gas.—The energy of a particle of

mass m moving on the surface of a sphere of radius R is
quantized according to the formula

ϵl ¼
ℏ2

2mR2
lðlþ 1Þ; ð1Þ

where ℏ is the reduced Planck constant and l ¼ 0; 1; 2;… is
the integer quantum number of the angular momentum. This
energy level has the degeneracy 2lþ 1 due to the magnetic
quantum number ml ¼ −l;−lþ 1;…; l − 1; l of the third
component of the angular momentum. In quantum statistical
mechanics the total number N of noninteracting bosons
moving on the surface of a sphere and at equilibrium with a
thermal bath of absolute temperature T is given by

N ¼
Xþ∞

l¼0

2lþ 1

eðϵl−μÞ=ðkBTÞ − 1
; ð2Þ
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where kB is the Boltzmann constant and μ is the chemical
potential. In the Bose-condensed phase, we can set μ ¼ 0
and

N ¼ N0 þ
Xþ∞

l¼1

2lþ 1

eϵl=ðkBTÞ − 1
; ð3Þ

where N0 is the number of bosons in the lowest single-
particle energy state, i.e., the number of bosons in the Bose-
Einstein condensate. From this equation one gets a critical
temperature TBEC above which N0 ¼ 0. Strictly speaking, in
our system with a finite radius R and finite particle number
N, μ cannot be zero and there is never a full depletion of
the condensate above the critical temperature. This residual
population of the condensate is, however, rapidly vanishing
for a finite but macroscopic system. Within the semiclassical
approximation, where

Pþ∞
l¼1 →

Rþ∞
1 dl, Eq. (3) becomes

n ¼ n0 þ
mkBT
2πℏ2

�
ℏ2

mR2kBT
− ln ðeℏ2=ðmR2kBTÞ − 1Þ

�
; ð4Þ

where n ¼ N=ð4πR2Þ is the 2D number density and n0 ¼
N0=ð4πR2Þ is the 2D condensate density. We emphasize that
in the low-temperature limit of T → 0 the second term of
Eq. (4) vanishes and the system density n is coincident with
the condensate density n0. At the critical temperature TBEC,
the condensate density must be zero: from Eq. (4) one finds

kBTBEC ¼
2πℏ2
m n

ℏ2

mR2kBTBEC
− ln ðeℏ2=ðmR2kBTBECÞ − 1Þ ; ð5Þ

which is an implicit analytical formula for the critical
temperature TBEC as a function of the 2D number density
n and the radius R of the sphere. As expected [28], in the
limit R → þ∞ one gets TBEC → 0. However, for any finite
value of R the critical temperature TBEC is larger than zero.
This can also be seen in the top panel of Fig. 1, where we
report the critical temperature TBEC for noninteracting
bosons as a function of the parameter nR2. The semiclassical
approximation (solid line) works very well because the
strong convergence to zero of the Bose distribution for high
values of l cuts off the pathological behavior of the density
of states for l ≫ 1. Combining Eqs. (4) and (5) one
immediately obtains the condensate fraction of the system
for 0 ≤ T ≤ TBEC; namely,

n0
n

¼ 1 −
1 − kBT mR2

ℏ2 ln ðeℏ2=ðmR2kBTÞ − 1Þ
1 − kBTBEC

mR2

ℏ2 ln ðeℏ2=ðmR2kBTBECÞ − 1Þ : ð6Þ

The numerical solution of Eq. (6) is reported in the bottom
panel of Fig. 1, in which we represent the condensate
fraction n0=n of noninteracting bosons in terms of the
rescaled temperature T=TBEC for different values of the

nR2 parameter, with n ¼ N=ð4πR2Þ. Experimentally, one
can tune nR2 simply changing the total number N, but also
changing the radius R at fixed density n.
Interacting Bose gas.—We now consider a system of

interacting bosons on the surface of a sphere. The main
thermodynamic function describing a system of particles
in the grand canonical ensemble is the grand potential
Ω ¼ −β−1 lnðZÞ, where β−1 ¼ kBT and Z is the grand
canonical partition function. Within the formalism of
functional integration, we calculate Z as the functional
integral,

Z ¼
Z

D½ψ̄ ;ψ �e−S½ψ̄ ;ψ �=ℏ; ð7Þ

where

S½ψ̄ ;ψ � ¼
Z

βℏ

0

dτ
Z

2π

0

dφ
Z

π

0

sinðθÞdθR2Lðψ̄ ;ψÞ ð8Þ

is the Euclidean action, and

FIG. 1. Top: Critical temperature for Bose-Einstein condensa-
tion in terms of the product nR2, where R is the radius of the
sphere and kBTBEC is rescaled with the energy ζ ¼ ℏ2n=m.
Notice how our result in the semiclassical approximation (solid
line) converges for nR2 ≫ 1 to the numerical evaluation of the
summation of Eq. (3) (dashed line). As expected, for fixed n the
critical temperature tends to zero in the thermodynamic two-
dimensional limit nR2 → ∞. Bottom: Condensate fraction n0=n
for noninteracting bosons on the sphere surface in terms of the
rescaled temperature T=TBEC, obtained from the numerical
solution of Eq. (6) with nR2 fixed.
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L ¼ ψ̄ðθ;φ; τÞ
�
ℏ∂τ þ

L2

2mR2
− μ

�
ψðθ;φ; τÞ

þ g
2
jψðθ;φ; τÞj4 ð9Þ

is the Euclidean Lagrangian, i.e., the Lagrangian with
imaginary time τ. Notice that the kinetic energy is written
in terms of the angular momentum L, which is proportional
to the angular components of the Laplacian operator in
spherical coordinates; namely,

L2 ¼ −ℏ2

�
1

sinðθÞ
∂2

∂φ2
þ 1

sin2ðθÞ
∂
∂θ

�
sinðθÞ ∂

∂θ
��

: ð10Þ

Our Lagrangian models interacting bosons on the surface
of a sphere. Experimentally, this corresponds to the thin-
shell limit of a bubble trap potential [12], in which the
atoms are confined by the radial shifted harmonic potential
Vshell ¼ mω2

shðr − RÞ2=2. Following Refs. [8,11], we sug-
gest that one can tune the experimental parameters to
confine the atoms on a shell with a radial harmonic length
lsh ¼ ½ℏ=ðmωshÞ�1=2 of the order lsh ≈ 0.1 μm, which is
much smaller than the radius of the sphere R ≈ 10 μm. In
this case the radial excitations are inhibited and it is safe to
impose our constraint in the Lagrangian of Eq. (9). Therein,
the real two-body interatomic potential VðrÞ has been
substituted with the effective two-dimensional zero-range
interaction coupling g. Therefore, for a given interatomic
potential, one can calculate the exact value of g [29].
One can also use the scattering theory to link g to the two-
dimensional s-wave scattering length as. In 2D the latter
quantity is, however, energy dependent and a physical
cutoff, usually identified with the chemical potential of
the system, is needed [30]. Besides this, the relation
between g and as should also include the corrections
due to the curvature of the scattering surface [31]. To keep
the compatibility with different experimental setups and
interparticle interactions, in the following we will simply
employ g, which could also be used as a phenomenological
fitting parameter for thicker spherical shells.
Let us now explicitly perform the functional integration

of the Lagrangian L. The spontaneous breaking in the
condensate phase of the U(1) symmetry of the complex
order parameter ψ is introduced with the Bogoliubov shift,

ψðθ;φ; τÞ ¼ ψ0 þ ηðθ;φ; τÞ; ð11Þ

where the real field configuration ψ0 describes the con-
densate component with angular momentum l ¼ 0 and
ml ¼ 0. By substituting this field parametrization and
keeping only second order terms in the field η, we rewrite
the Lagrangian as

L ¼ L0 þ Lg; ð12Þ

with L0 ¼ −μψ2
0 þ gψ4

0=2, and

Lg ¼ η̄ðθ;φ; τÞ
�
ℏ∂τ þ

L2

2mR2
− μ

�

× η

�
θ;φ; τÞ þ g

2
½η̄2ðθ;φ; τÞ þ η2ðθ;φ; τÞ�: ð13Þ

The mean-field Lagrangian L0 gives the mean-field grand
potential,

Ω0 ¼ 4πR2ð−μψ2
0 þ gψ4

0=2Þ; ð14Þ

while the functional integral of the Gaussian Lagrangian Lg

can be calculated explicitly with the following decompo-
sition of the complex fluctuation field ηðθ;φ; τÞ,

ηðθ;φ; τÞ ¼
X
ωn

X∞
l¼1

Xl

ml¼−l

e−iωnτ

R
Yl

ml
ðθ;φÞηðl; ml;ωnÞ;

ð15Þ

and similarly for η̄ðθ;φ; τÞ, where ωn are the Matsubara
frequencies, and we introduce the orthonormal basis of the
spherical harmonics Yl

ml
[32]. Substituting this decompo-

sition into the Gaussian Lagrangian (13) and using the
orthonormality properties of Yl

ml
and of the complex

exponentials, we rewrite the Gaussian action Sg as

Sg½η̄; η� ¼
ℏ
2

X
ωn

X∞
l¼1

Xl

ml¼−l

�
η̄ðl; ml;ωnÞ

ηðl;−ml;−ωnÞ

�T

×M

�
ηðl; ml;ωnÞ

η̄ðl;−ml;−ωnÞ

�
; ð16Þ

where the elements Mij of the matrix M are defined as

Mii ¼ ð−1Þiiℏωn þ ϵl − μþ 2gψ2
0; i ¼ 1; 2;

M12 ¼ M21 ¼ ð−1Þmgψ2
0: ð17Þ

The Gaussian action Sg can be integrated in theωn ≥ 0 field
sector and the corresponding contribution to the Gaussian
grand potential Ωg reads

Ωgðμ;ψ2
0Þ ¼

1

2β

X
ωn

X∞
l¼1

Xl

ml¼−l
lnfβ2½ℏ2ω2

n þ E2
l ðμ;ψ2

0Þ�g;

ð18Þ

where Elðμ;ψ2
0Þ is the excitation spectrum of the interacting

system:

Elðμ;ψ2
0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵl − μþ 2gψ2

0Þ2 − g2ψ4
0

q
: ð19Þ
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One can easily sum over the Matsubara bosonic frequencies
ωn [33], and remembering the mean-field grand potential
Ω0 of Eq. (14), we obtain the total grand potential Ω as

Ωðμ;ψ2
0Þ ¼ 4πR2ð−μψ2

0 þ gψ4
0=2Þ þ

α

2

X∞
l¼1

Xl

ml¼−l
Elðμ;ψ2

0Þ

þ α

β

X∞
l¼1

Xl

ml¼−l
lnð1 − e−βElðμ;ψ2

0
ÞÞ þ oðα2Þ;

ð20Þ

where we include the parameter α ¼ 1, whose power
counts the perturbative order of the grand potential expan-
sion [34,35]. We fix the value of the order parameter ψ0

with the variational saddle-point condition ∂Ω=∂ψ0 ¼ 0,
which determines a relation between ψ0, the chemical
potential μ, and the contact interaction strength g. Since the
condensate density n0 is defined as n0 ¼ ψ2

0, the saddle-
point condition implies that

n0ðμÞ ¼
μ

g
−

α

4πR2

X∞
l¼1

Xl

ml¼−l

ℏ2lðlþ1Þ
2mR2 þ μ

EB
l

�
1

2
þ 1

eβE
B
l − 1

�

þ oðα2Þ; ð21Þ

which at the lowest perturbative order gives n0 ¼ μ=
gþ oðαÞ, and where the excitation spectrum EB

l ¼
El½μ; n0ðμÞ� takes the Bogoliubov-like form [36]

EB
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵlðϵl þ 2μÞ

p
: ð22Þ

With the mean-field condition, the grand potential of
Eq. (20) can be rewritten as

Ω½μ; n0ðμÞ� ¼ −4πR2
μ2

2g
þ α

2

X∞
l¼1

Xl

ml¼−l
EB
l

þ α

β

X∞
l¼1

Xl

ml¼−l
lnð1 − e−βE

B
l Þ þ oðα2Þ; ð23Þ

and we can introduce the system density n as

nðμÞ ¼ −
1

4πR2

∂Ω½μ; n0ðμÞ�
∂μ : ð24Þ

Since we are interested in the relation between the density
n and the condensate density n0, we substitute in the
last equation the value of μ ¼ μðn0Þ given by Eq. (21),
obtaining

nðn0Þ ¼ n0 þ fð0Þg ðn0Þ þ fðTÞg ðn0Þ; ð25Þ

where

fð0Þg ðn0Þ ¼
α

4πR2

1

2

X∞
l¼1

Xl

ml¼−l

ϵl þ gn0
El½μðn0Þ; n0�

ð26Þ

is the zero-temperature Gaussian density, and

fðTÞg ðn0Þ ¼
α

4πR2

X∞
l¼1

Xl

ml¼−l

ϵl þ gn0
El½μðn0Þ; n0�

1

eβEl½μðn0Þ;n0� − 1

ð27Þ

is the finite-temperature Gaussian density. We emphasize
that, at a Gaussian level, this procedure is equivalent to the
one adopted in our previous article [37]. The number
density of Eq. (25) constitutes a reliable result in a low-
temperature and weakly interacting regime, in which the
quantum and thermal depletion are small, namely, n ≈ n0.
Within the variational perturbation theory (VPT) [38,39],
one can employ the weakly interacting perturbative expan-
sion of Eq. (25) to derive a self-consistent approximation
for the number density, valid also for larger values of
the depletion. In our case, the VPT procedure outlined in
Ref. [35] is equivalent at the order oðα2Þ to the substitution
of the condensate density n0 in Eqs. (26), (27) with the total

number density n, obtaining fð0Þg ðnÞ and fðTÞg ðnÞ. We stress
that this VPT method for a 3D homogeneous Bose gas
leads to a critical temperature that scales with the square
root of the gas parameter, while Monte Carlo simulations
suggest a linear scaling [40]. Setting α ¼ 1, we now

calculate explicitly fð0Þg ðnÞ, which is ultraviolet divergent
and needs a regularization procedure. We rewrite the sum as
an integral over l in which the degeneration over ml gives a
2lþ 1 factor. Using the variable t ¼ ℏ2lðlþ 1Þ=ð4mngR2Þ,
we integrate fð0Þg ðnÞ subtracting the pathological asymp-
totic behavior of the integrand function at þ∞, thus
obtaining

fð0Þg ðnÞ ¼ mgn
4πℏ2

þ 1

4πR2

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gmnR2

ℏ2

r #
; ð28Þ

which vanishes for noninteracting bosons for which the
quantum depletion does not occur. We emphasize that

fð0Þg ðnÞ generalizes the quantum depletion result by Schick
for a weakly interacting Bose gas in 2D [41], by including
a correction due to the finite size of the sphere radius. In
particular, Schick’s result is reproduced in the R → ∞ limit
in which the interaction coupling g can be identified with
g ¼ 2πℏ2=½mj lnðna2sÞj�, where as is the two-dimensional
s-wave scattering length [30]. Similarly, we calculate the

thermal density fðTÞg ðnÞ, obtaining
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fðTÞg ðnÞ ¼ 1

2πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gmnR2

ℏ2

r
−
mkBT
2πℏ2

× ln
�
eðℏ2=mR2kBTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2gmnR2=ℏ2Þ

p
− 1

�
: ð29Þ

Putting together the density contributions Eqs. (28) and
(29) with n0, we get the VPT-improved self-consistent
condensate fraction of an interacting Bose gas on the
surface of a sphere as

n0
n

¼ 1 −
mg
4πℏ2

−
1

4πR2n

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gmnR2

ℏ2

r �

þ mkBT
2πℏ2n

ln
�
eðℏ2=mR2kBTÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2gmnR2=ℏ2Þ

p
− 1

�
: ð30Þ

With n0 ¼ 0 in Eq. (30), we calculate an implicit relation
for the condensation critical temperature of interacting
bosons [with βBEC ¼ ðkBTBECÞ−1]

kBTBEC ¼
2πℏ2n
m − gn

2

ℏ2βBEC
2mR2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gmnR2

ℏ2

q �
− ln

�
eðℏ2βBEC=mR2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2gmnR2=ℏ2Þ

p
− 1

� : ð31Þ

Note that the critical temperature for the noninteracting
system of Eq. (5) is reproduced if g ¼ 0 is set. In Fig. 2 we
report the critical temperature kBTBEC=ζ (dashed line),
rescaled with the energy ζ ¼ ℏ2n=m, in terms of gm=ℏ2.

The shaded area under each of the dashed curves with nR2

fixed is where BEC occurs: if the density n is kept fixed
and the sphere radius R is increased, this area diminishes.
Indeed, the expected result of TBEC ¼ 0 is reobtained in the
2D flat-system limit R → ∞.
A spherical surface is topologically inequivalent to the

2D flat plane. In particular, the presence of a point at
infinity allows only for couples of topological defects to
exist, being vortex-antivortex dipoles, or free vortices [42].
Despite this fact, the Kosterlitz-Nelson criterion [43] for
the jump of the superfluid density nsðTÞ was recovered
extending the Berezinski-Kosterlitz-Thouless theory on
the sphere [26]; i.e., kBTBKT=½ℏ2nsðTBKTÞ=m� ¼ π=2.
Here, in analogy to the Landau formula for the 2D plane,
we calculate nsðTÞ as

ns ¼ n −
1

kBT

Z þ∞

1

dlð2lþ 1Þ
4πR2

ℏ2ðl2 þ lÞ
2mR2

eE
B
l =ðkBTÞ

ðeEB
l =ðkBTÞ − 1Þ2 ;

ð32Þ

and applying the Kosterlitz-Nelson criterion, we evaluate
numerically the critical temperature TBKT, represented as
the solid curve of Fig. 2. We find that TBKT has a weak
dependence on nR2 and goes to zero in an exponentially
small region where gm=ℏ2 → 0: this result is in agreement
with the classical field simulations of Ref. [44] for bosons
in a 2D uniform configuration. Indeed, the spherical surface
is locally isomorphic to the Euclidean plane [26], where
superfluidity is absent in the noninteracting limit. At the
same time, we stress that for any tiny but physically
meaningful interaction strength, the critical BKT temper-
ature TBKT is practically finite, while TBEC coincides with
the noninteracting TBEC. In this regime of vanishing
interaction, the unification of BEC and BKT transitions
observed with bosons in a 2D harmonic trap [45] is
obtained only when nR2 ≳ 104.
In the phase diagram of Fig. 2, within the approxima-

tions involved in the calculation of nsðTÞ and at the zero

FIG. 2. Phase diagram of the system for two values of nR2: 102

in the upper panel, 104 in the lower panel. The dashed lines
represent the critical temperature kBTBEC=ζ, rescaled with the
typical energy ζ ¼ ℏ2n=m, plotted in terms of the adimension-
alized zero-range interaction strength gm=ℏ2. The solid curve
represents the critical temperature kBTBKT=ζ of the Berezinski-
Kosterlitz-Thouless transition. Note that, depending on the values
of nR2 and of gm=ℏ2 and within the approximations adopted (see
text), the system can show coexistence of condensation and
superfluidity (BECþ SF), or condensation in the absence of
superfluidity (BEC).
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order of VPT, we find a region where condensation and
superfluidity coexist, and a region where condensation is
not accompanied by superfluidity. Note that the latter
condition is more pronounced for nR2 ≲ 102 and was
experimentally observed in a quasi-2D finite-size Bose
gas [46]: at low density, the curvature of the sphere may
play the same role of their 2D weak external potential.
Finally, in the regime of gm=ℏ2 ≫ 1, where our perturba-
tive scheme is not expected to hold, we point out that TBKT
becomes essentially constant while TBEC → 0 due to a large
depletion of the condensate. The liability of this result
should be established with more refined methods.
Conclusions.—The condensate fraction for noninteract-

ing and interacting bosons on the surface of a sphere, i.e.,
Eqs. (5), (6), (30) and (31), can be experimentally observed
in microgravity conditions with bubble traps in the thin-
shell limit. These results are concrete predictions to test
quantum statistical mechanics in regimes where finite-size
and curvature effects play a relevant role. Further exper-
imental and theoretical investigations should also focus on
the expected interplay of superfluidity and Bose-Einstein
condensation. We expect that a typical 2D configuration,
with N ≈ 105 87Rb atoms confined on a shell with radius
R ¼ 10 μm and thickness lsh ¼ 0.1 μm, has a critical
temperature of TBEC ¼ 670 nK for gm=ℏ2 ¼ 23=2π1=2as=
lsh ¼ 0.26, where as ¼ 5 nm is the bare s-wave scattering
length. With the Feshbach resonance one can tune as and
investigate also regimes with higher values of gm=ℏ2.

The authors acknowledge G. Bighin, F. Cinti, B.
Garraway, T. Macri, D. Partipilo, A. Pelster, and F.
Toigo for useful suggestions and discussions.
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