
 

Measuring the Hydrodynamic Linear Response of a Unitary Fermi Gas
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We directly observe the hydrodynamic linear response of a unitary Fermi gas confined in a box potential
and subject to a spatially periodic optical potential that is translated into the cloud at speeds ranging from
subsonic to supersonic. We show that the time-dependent change of the density profile is sensitive to the
thermal conductivity, which controls the relaxation rate of the temperature gradients and hence the
responses arising from adiabatic and isothermal compression.
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A unitary Fermi gas is a scale-invariant, strongly interact-
ing quantummany-body system, created by tuning a trapped,
two-component cloud near a collisional (Feshbach) reso-
nance [1]. Unitary gases are of great interest [2], as the
thermodynamic properties and transport coefficients are
universal functions of the density and temperature, enabling
parameter-free comparisons with predictions. Equilibrium
thermodynamic properties of trapped unitary gases have
been well characterized [3,4]. In contrast, hydrodynamic
transport measurements require dynamical experiments that
have been obscured by the low density near the cloud edges,
which leads to free streaming. For expanding clouds [5,6],
this problem has been circumvented by employing second
order hydrodynamics methods to extract the local shear
viscosity [7,8], and is obviated for trapped samples with
uniformdensity. A normal unitary gas, at temperatures above
the superfluid transition, is a single component fluid that
affords the simplest universal system for hydrodynamic
transport measurements, as the transport properties comprise
only the shear viscosity η and the thermal conductivity κT,
since the bulk viscosity vanishes in scale-invariant systems
[9–11]. Further, measurements in the normal fluid at high
temperature T can be compared with benchmark variational
calculations for a unitary gas in the two-body Boltzmann
limit [12,13],
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with kB the Boltzmann constant and m the atom mass.
In this Letter, we demonstrate a new probe of hydro-

dynamic transport, which is applied to a normal unitary
Fermi gas of 6Li. The gas is confined in a repulsive box
potential, creating a sample of nearly uniform density, and
driven by a moving, spatially periodic optical potential of

chosen wavelength λ along one axis z, which moves into
the box at a selected speed v. We measure the density
response δnðz; tÞ, which is analyzed using a linear hydro-
dynamics model. The model shows that the response
profiles are sensitive to the effective sound speed, which
is controlled by the ratio of the tunable wave frequency
ω ¼ 2πv=λ to the decay rate of the temperature gradients,
γκ ∝ κT=λ2. When γκ ≪ ω, temperature gradients relax
slowly and sound waves propagate at the adiabatic sound
speed c0. In the opposite limit, γκ ≫ ω, temperature gra-
dients relax quickly and sound waves propagate at the
isothermal sound speed cT < c0.
The experiments, Fig. 1, employ ultracold 6Li atoms, in a

balanced mixture of the two lowest hyperfine states, which
are loaded into a box potential U0, comprising six sheets of
blue-detuned light, created by two digital micromirror
devices (DMDs). This produces a rectangular density profile

FIG. 1. A unitary Fermi gas, confined in a box, is driven by a
moving spatially periodic potential. (a) The box potential is
created by two 669 nm sheet beams (top and bottom) and four
vertically propagating 532 nm sheet beams. (b) Column density.
(c) Integrated column density in the box potential showing 1D
profile.
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with dimensions ð129 × 84 × 58Þ μm, which slowly varies
due to the curvature of the bias magnetic field, Fig. 1. The
average total central density is n0 ≃ 2.6 × 1011 atoms=cm3,
for which the Fermi energy ϵF0 ≡ kBTF ¼ kB × 0.16 μK
and the Fermi speed vF ¼ 2.1 cm=s. As suggested by Zhang
and Yu [14], we probe the linear response δnðz; tÞ by
employing one of the DMDs to generate a small spatially
periodic optical potential that moves through the cloud at
speed v,

δUðz; tÞ ¼ δU0½1 − ϵ cosðqz − qvtÞ�Hðvt − zÞ; ð3Þ
whereq ¼ 2π=λ. TheHeaviside envelope functionHðvt−zÞ
vanishes inside the box at t ¼ 0. Positive light intensity
requires 1 − ϵ cosðqz − qvtÞ ≥ 0, so that ϵ ≤ 1. For each
speed v, δUðz; tÞ is turned on for a fixed number of periods,
after which an absorption image is recorded to obtain the
column density. For the longest wavelength employed in
the experiments, λ ¼ 30 μm, the image is taken after three
periods (leading edge at 90 μm), while for the shortest
wavelength λ ¼ 19 μm, imaging occurs after four periods
(leading edge at 76 μm). Instead of measuring the energy
input, as proposed in Ref. [14], we directly obtain the
response δnðz; tÞ=n0 from the integrated column density,
which is measured 5 times for each λ at several different
frequencies f ≡ v=λ from 200 to 800 Hz.
Figs. 2–4 show the density response δnðz; tÞ as the drive

speed v is varied from subsonic v < c0 to supersonic
v > c0, where c0 is the adiabatic sound speed. At low drive
speeds, the leading edge of the response is nearly flat, as
sound waves propagate well past the front of the driving
potential. As v approaches c0, the amplitude of the density
response increases and the leading peak narrows.
To understand the density profiles arising from the

perturbation δU, we construct the coupled equations for
the change in the density δn and for the change in the
entropy per particle δs1. The analysis is simplified for
experiments in the linear response regime, where [15]
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with m the atom mass. Here, δs̃1 ¼ n0βT0δs1=cP, with β
the thermal expansivity and T0 the initial sample temper-
ature [15]. We find
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κT
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cP − cV
cP

∂2
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where cV and cP are the heat capacities per particle at
constant volume and at constant pressure, determined
from the measured equation of state [4,15]. On the left
side of Eq. (4), the c20 terms arise from the pressure change
δp [15]. The η term produces a viscous damping rate
γη ¼ 4ηq2=ð3n0mÞ for the response of the density to the

spatially periodic part of δUðz; tÞ, Eq. (3). On the right-
hand side of Eq. (4), the first term arises from the perturbing
potential, with n0ðzÞ the background density, which varies
slowly due to the bias magnetic field curvature. Here,

FIG. 2. Response to subsonic perturbations. Density change,
δn=n0, for a sinusoidal spatial perturbation with λ ¼ 30 μm,
moving into the sample at a speed v ¼ λf < c0 for 3 periods
1=f. Data are shown as blue dots. Hydrodynamic model with
c0 ¼ 1.3 cm=s, δU0 ¼ 0.26ϵF0, and ϵ ¼ 0.29 (red curves) for
frequencies (a) f¼200Hz, v=c0 ¼ 0.46, (b) f ¼ 250 Hz, v=c0 ¼
0.58, (c)f¼300Hz,v=c0¼0.69, and (d)f¼350Hz,v=c0 ¼ 0.81.
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we retain the full spatial variation of the force per unit
volume [15], which vanishes at the box edges. In the
second term, ∂zU0ðzÞ is the force from the box potential.

We determine ∂zU0ðzÞ from n0ðzÞ, which is measured in
equilibrium [15].
In addition to the shear viscosity, δnðz; tÞ carries infor-

mation about the thermal conductivity κT, which sets
the relaxation rate, γκ ¼ κTq2=ðn0cVÞ in Eq. (5), of the
spatially periodic temperature profile that is imprinted by
δUðz; tÞ, Eq. (3). For a high speed v, the wave frequency
qv ≫ γκ. Then ∂tδs̃1 dominates in Eq. (5) and δs̃1 ≃ 0,
yielding ð∂2

t − c20∂2
zÞδn on the left side of Eq. (4). In this

case, the compression is adiabatic, and sound waves
propagate at the speed c0. In the opposite limit of a low
speed v, the wave frequency qv ≪ γκ. Equation (5) shows
that ∂2

zδs̃1 ≃ −ðcP − cVÞ=cP∂2
zδn, yielding ð∂2

t − c2T∂2
zÞδn

in Eq. (4), with cT ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cV=cP

p
. Then, the compression is

isothermal and sound waves propagate at the isothermal
sound speed cT [15].
To model the normal fluid data, c0 is used as a fit

parameter. The fitted c0 then serves as a thermometer, as the
reduced temperature θ0 ¼ T0=TF of the gas is monoton-
ically related to c0=vF in the normal fluid regime [15]. With
θ0 determined, cV and cP are then fixed by the measured
equation of state [4,15]. Further, θ0 determines the shear
viscosity η as discussed below.
Our analysis benefits from recent progress in determin-

ing the local shear viscosity of the normal fluid from
hydrodynamic expansion experiments [6,8]. Extraction of η
is simplified in expansion measurements, because the
temperature gradient is negligible [19] so that the thermal
conductivity κT can be neglected. The most complete data
for the shear viscosity have been obtained from the aspect
ratio of expanding cigar-shaped clouds, measured at a fixed
time t after release from an optical trap as a function of the
cloud energy [6]. The latest hydrodynamic analysis utilizes
an anisotropic pressure model, which properly interpolates
between the hydrodynamic behavior in the dense regions
of the cloud and the free streaming ballistic expansion near

FIG. 3. Response to subsonic perturbations. Density change,
δn=n0, for a sinusoidal spatial perturbation with λ ¼ 19 μm,
moving into the sample at a subsonic speed v ¼ λf < c0 for
4 periods 1=f. Data are shown as blue dots. Hydrodynamic model
with c0 ¼ 1.3 cm=s, δU0 ¼ 0.22ϵF0, and ϵ ¼ 0.23 (red curves)
for frequencies (a) f ¼ 300 Hz, v=c0 ¼ 0.44, (b) f ¼ 400 Hz,
v=c0 ¼ 0.58, (c) f ¼ 500 Hz, v=c0 ¼ 0.73, and (d)f ¼ 600 Hz,
v=c0 ¼ 0.88.

FIG. 4. Response to a supersonic perturbation. Density change,
δn=n0, for a sinusoidal spatial perturbation with λ ¼ 19 μm,
moving into the sample at a supersonic speed v ¼ λf ¼ 1.17c0
for 4 periods 1=f and f ¼ 800 Hz. Data are shown as blue dots.
Hydrodynamic model with c0 ¼ 1.3 cm=s, δU0 ¼ 0.22ϵF0, and
ϵ ¼ 0.23 (red curve). The thermal conductivity κT cannot be
extracted from the fit of the model to the supersonic data.
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the cloud edges [8]. The new analysis yields an expansion
of the local shear viscosity in powers of the diluteness nλ3T ,

η ¼ η0
ðmkBTÞ3=2

ℏ2
½1þ η2ðnλ3TÞ þ � � ��; ð6Þ

where λT ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
is the thermal wavelength and n

is the total density for a balanced two-component mixture.
Fits to the expansion data yield η0 ¼ 0.265ð20Þ, in excel-
lent agreement with the variational result obtained from
the two-body Boltzmann equation for a unitary gas, Eq. (1),
η0 ¼ 15=ð32 ffiffiffi

π
p Þ ¼ 0.26446 [8]. This confirms that the

data and the analysis properly reproduce the high temper-
ature limit, which is independent of the density. The next
order term is independent of the temperature, with
η2 ¼ 0.060ð20Þ, while the η3ðnλ3TÞ2 term is negligible.
Remarkably, the first two terms fit the expansion data
down to temperatures just above the superfluid transition.
We therefore use Eq. (6) as in input for Eq. (4), where
η=ðn0mÞ≡ αðθ0Þℏ=m and αðθ0Þ ¼ α0θ

3=2
0 þ α2, with α0 ¼

ð3π2= ffiffiffi
8

p Þη0 ¼ 2.77 and α2 ¼ ð2πÞ3=2η0η2 ¼ 0.25.
The data are modeled by numerically integrating

Eqs. (4) and (5) using four fit parameters, c0, δU0, and
ϵ, given in the figure captions, and κT , which is discussed
below. These parameters are extracted by minimizing χ2

in the central region of the data away from the less dense
edges. The fits are done one parameter at a time across
all frequencies for a global best fit, with cP, cV , and η
determined by θ0ðc0Þ. This process is repeated until
variation in the parameters no longer results in improve-
ment. The sensitivity to ϵ is greatest where the density
response shows periodic modulation, while c0 is dominant
in the shape of the leading edges, Figs. 2 and 3. The fitted
δU0 values are consistent with the value 0.2ϵF0 estimated
from the expected modulation depth and the maximum
box potential 4.5ϵF0 [15]. Blurring arising from the
imaging resolution ≃ 3.5 μm, causes the fitted ϵ for the
19 μm data to be smaller than for the 30 μm data. We find
that the model captures both the amplitudes and shapes of
the density response δnðz; tÞ=n0 for all of the frequencies,
Figs. 2 and 3.
From the χ2 fits for both λ ¼ 19 and for λ ¼ 30 μm, we

obtain c0 ¼ 1.30 cm=s, consistent with sound speed mea-
surements in the uniform cloud, which gives 1.40 cm=s.
The measured c0 determines θ0 ¼ 0.50 [15]. The temper-
ature was not further increased, because the box potential
was not strong enough to confine the gas at significantly
higher temperature.
We see that the quality of fits decreases as the speed

approaches the adiabatic sound speed, v=c0 ¼ 0.88,
Fig. 3(d). In the supersonic regime, Fig. 4, we find that
the fit of the linear hydrodynamic model to the density
response is poor, and the thermal conductivity cannot be
reliably extracted from the model for any perturbation
moving faster than the adiabatic sound speed. We estimate
that the hydrodynamic relaxation time is τ ¼ 0.13 ms

[15], which is fast compared to the period of 1.25 ms at the
frequency f ¼ 800 Hz used to observe the supersonic
response. However, in the supersonic regime, it is possible
that the increasing density gradients produce weak shock
waves, which are not included in our model.
Sensitivity to κT is enabled by measurement at subsonic

speeds, as the frequency v=λ can be less than the relaxation
rate γκ ¼ κTq2=ðn0cVÞ. Using Eq. (2), with θ0 ¼ 0.50, we
find γκ ¼ 2π × 760 Hz for λ ¼ 19 μm and γκ ¼
2π × 305 Hz at λ ¼ 30 μm. The fits to the trailing edge
of the leading peak rise more sharply for larger κT, because
the density response propagates closer to the isothermal
sound speed cT < c0 for large γκ and lags behind the
leadingpeak to cause a larger disturbance. From the fits to the
subsonic data, we find κT ¼ 1.14ð17Þ × ð15=4ÞðkB=mÞℏn0
at θ0 ¼ 0.50.
The fitted thermal conductivity at θ0 ¼ 0.50 for the

unitary Fermi gas can be compared with the variational
calculations [13]. As noted above, the high temperature
shear viscosity Eq. (6) fits the expansion data down to
temperatures just above the superfluid transition. For this
reason, we compare the fit value of κT=η to the predicted
high temperature ratio, Eq. (2), κT=η ¼ ð15=4ÞðkB=mÞ.
This ratio holds for the unitary gas and for an energy-
independent s-wave scattering cross section [13], and is
identical to the predictions and measurements for rare gases
in the Boltzmann limit [20,21]. With the viscosity from the
expansion data, as used in the fits, η ¼ 1.23ℏn0 at θ0 ¼ 0.5,
we find κT=η ¼ 0.93ð14Þ × ð15=4ÞðkB=mÞ, close to the
ratio predicted in the high temperature limit. Finally, we
determine the Prandtl number, Pr ¼ ðcP=mÞη=κT [13,22].
For θ0 ¼ 0.5, we find cP ¼ 1.68kB from the equation of
state [4,15], yielding Pr ¼ 0.48ð8Þ, which can be compared
to the high temperature limit Pr ¼ 2=3, obtained from
Eq. (2) with cP ¼ 5=2kB.
In conclusion, we have directly measured the hydro-

dynamic response of a unitary Fermi gas subject to a moving
spatially periodic perturbation. The measured density per-
turbations validate a linear response model that incorporates
the measured box potential, enabling predictions beyond
the approximation of an infinite medium. From the low
frequency response, we obtain an estimate of the thermal
conductivity of the normal fluid that is consistent with recent
predictions. Future measurements in improved box poten-
tials will permit studies of the thermal conductivity at higher
temperatures, enabling more precise comparison with bench-
mark variational calculations. Further, this new method will
enable measurement of the thermal conductivity and shear
viscosity for imbalanced mixtures in nearly uniform gases,
where the transport properties are predicted to change [23].
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