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In this work, we propose the quantum Hall system as a platform for exploring black hole phenomena. By
exhibiting deep rooted commonalities between the lowest Landau level and spacetime symmetries, we
show that features of both quantum Hall and gravitational systems can be elegantly captured by a simple
quantum mechanical model: the inverted harmonic oscillator. Through this correspondence, we argue that
radiation phenomena in gravitational situations, such as presented by W. G. Unruh and S. Hawking, bear a
parallel with saddle-potential scattering of quantum Hall quasiparticles. We also find that scattering by the
quantum Hall saddle potential can mimic the signature quasinormal modes in black holes, such as
theoretically demonstrated through Gaussian scattering off a Schwarzschild black hole by C. V.
Vishveshwara. We propose a realistic quantum Hall point contact setup for probing these temporally
decaying modes in quasiparticle tunneling, offering a new mesoscopic parallel for black hole ringdown.
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General relativity and quantum mechanics are the two
cornerstones of modern physics, with the former describing
physics at the astronomical scales and the latter primarily at
micro- and mesoscopic scales. Outside of quantum gravity,
these fields of studies are largely viewed as disjoint: each
with a host of exotic physical phenomena. Recently,
numerous works have drawn analogies between these
disparate scales. Quantum systems, in fact, offer a multi-
tude of ways to probe relativistic phenomena: from
mimicking curved spacetimes [1] to investigating dynamic
geometric backgrounds [2–6]. In this Letter, we show that
the signature features of black holes and the scattering in
quantum Hall systems can be remarkably unified by a
mapping to single particle physics in the presence of an
inverted harmonic oscillator (IHO) potential. The IHO
model exhibits potential scattering and temporally
decaying modes: features that have made the model
invaluable in a broad variety of contexts since the birth
of quantum mechanics [7–10]. From its infancy, pheno-
mena such as particle decay [11] and metastability [12]
have been analyzed using the IHO. In developments across
the decades, the IHO has played key roles in the context of
many disparate fields of physics and mathematics [13–24].
Thus, through its powerful simplicity, the IHO serves as an
archetype for phenomena in numerous realms, much like
the more familiar simple harmonic oscillator. Here, the IHO
plays a crucial role in demonstrating how the confluence of
black hole and quantum Hall physics can transfer insights
between the astronomical and the mesoscopic realms.
In this Letter, we demonstrate that the physics of

quantum Hall systems in strained or point contact geom-
etries makes manifest two deep mathematical structures

underlying black hole phenomena. Specifically, the quan-
tum Hall situation describes lowest Landau level (LLL)
physics in the presence of a saddle potential. (Quasi)
particles moving in this potential are squeezed as a function
of time; this operation of LLL squeezing is formally
equivalent to time-evolution near the event horizon outside
a black hole [25]. Hence, we show that the transmission
probability near the point contact region manifest in
conductance measurements naturally follows the thermal
form associated with Hawking radiation. The second
mathematical structure captured by such point contact
physics is the scattering off the effective potential that lies
outside a black hole event horizon. Quasi-normal modes,
which are a hallmark temporally decaying feature of this
scattering, are the fingerprint signatures of black holes in
gravitational wave detection and have been hinted at by the
Laser Interferometer Gravitational Wave Observatory
(LIGO) discovery. Inspired by this black hole phenomenon,
here, we highlight the presence of analogous temporally
decaying modes in quantum Hall tunneling and propose a
hitherto unexplored time-resolved measurement in a
quintessential mesoscopic setting of quantum point
contacts.
In what follows, we demonstrate how the semiclassical

black hole scattering problem can be reduced to one-
dimensional scattering off an IHO potential. We then show
that the noncommutative structure of the lowest Landau
level gives rise to the same scattering description in the
presence of a saddle potential. Distinct from the black hole
scattering context, we show that the Hamiltonian describ-
ing the IHO is isomorphic to the Rindler Hamiltonian
associated with time evolution near the event horizon. This
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symmetry-based link puts the previously observed con-
nection between quantum Hall transmission probabilities
and black hole thermality [26] on a stronger footing than a
cursory analogy. Finally, we perform an in-depth analysis
of quasinormal mode decay as an unexplored probe of
quantum Hall dynamics.
Black hole scattering.—A black hole is formed by the

gravitational collapse of a massive object. It is character-
ized by an event horizon that acts as a one-way membrane
in spacetime: matter can enter the horizon but cannot leave.
Several classical gravity and holographic phenomena, such
as black hole collisions and quasinormal modes, are
described through wave scattering in the black hole
spacetime [27,28]. Here, we focus on such scattering for
a massless scalar field Φ to provide a simple, illustrative
derivation of IHO dynamics. The equation of motion for Φ
in the background metric gμν is given by [27,29]

1
ffiffiffiffiffiffi−gp ∂

∂xμ
�
gμν

ffiffiffiffiffiffi
−g

p ∂
∂xνΦ

�
¼ 0: ð1Þ

For the Schwarzschild metric associated with an
uncharged, nonrotating black hole for which the event
horizon is at r ¼ 2GM=c2, we can decompose the field into
its radial and angular parts. For each angular momentum
component l, the scalar field experiences an effective
potential with its maximum outside the event horizon.
The equation for the radial component ΨðrÞ reduces to the
well-known form [27,30–33]

∂2Ψ
∂r2� þ Vðl; r�ÞΨ ¼ 0: ð2Þ

Here, r� is the “tortoise coordinate” [29] in which the
event horizon is at negative infinity, and Vðl; r�Þ is the
effective potential. Higher spin fields, such as for gravita-
tional waves, can be treated analogously. Crucially, the
potential has a maximum V0 ¼ Vðl; r0Þ at a point r� ¼ r0,
and it can be approximated by an inverted harmonic
potential nearby. Thus, in the semiclassical approximation,
Eq. (2) takes the Weber form [33,34]:

−
d2Ψ
dr̃2�

−
1

4
r̃2�Ψ ¼

�
νþ 1

2

�
Ψ: ð3Þ

Here, r̃� ¼ ð2V}
0Þ1=4ðr� − r0Þ measures the dimensionless

distance from the maximum. We identify νþ 1=2 ¼
−V0=ð2V}

0Þ1=2 so as to cast Eq. (3) in the standard form.
This derivation highlights the relevance of the IHO in black
hole scattering [28,31,33,35]. In fact, the IHO captures
essential dynamics even in the presence of gravitational
backreaction [36,37] and the semiclassical limit of scatter-
ing off any smooth barrier [34].
Quantum Hall scattering.—We now show how the same

scattering problem in Eq. (3) arises in a quantum Hall

system in the presence of a saddle potential. We consider a
two-dimensional system of electrons confined to the x-y
plane in the presence of a magnetic field Bẑ ¼ ∇ × A⃗.
Neglecting interactions, as is appropriate for an integer
quantum Hall state, the Hamiltonian takes the form

H0 ¼
1

2m
jπ⃗j2 þ λðx2 − y2Þ; ð4Þ

where π̂i ¼ p̂i − eÂi=c is the kinetic momentum, and the
index i ¼ x, y ranges over the spatial directions. The
parameter λ captures the strength of the saddle potential.
This potential models bulk quasiparticle tunneling through
a point contact [26,38–40] and can serve as an anyon beam
splitter [41].
We introduce the guiding center operators R̂i ¼ x̂iþ

ðl2
B=ℏÞϵijπ̂j, where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=ðeBÞp
is the magnetic

length. Upon projection to the lowest Landau level, the
dynamics is determined entirely by the projected potential,
which is a function of the Ri only [42]. The guiding center
coordinates form a noncommutative plane, obeying
½R̂i; R̂j� ¼ −il2Bϵij. This commutation rule yields an effec-
tive “Planck’s constant” ℏeff ¼ l2B in this phase space that
can be tuned through the applied magnetic field to access
the semiclassical limit. Identifying R̂x=ð

ffiffiffi
2

p
lBÞ as a

“momentum” P̃ and
ffiffiffi
2

p
R̂y=lB as a “position” X̃, the

projected Hamiltonian is that of the IHO:

HIHO ¼ ð2ℏeffλÞ
�
P̃2 −

1

4
X̃2

�
ð5Þ

Identifying X̃ with r̃� and the eigenenergy Eν ¼ 2ℏeffλðνþ
1
2
Þ for any real ν, the Schrödinger equation for this
Hamiltonian takes the form of Eq. (3). Note that, even
without LLL projection, dynamics in the presence of a
saddle potential decouples into intra- and inter-Landau
level components; the intra-Landau level dynamics is also
governed by the applied potential [38].
The saddle potential can also be generated from area

preserving shear deformations of two-dimensional elec-
trons in a magnetic field. The generators Ĵij of these
transformations are [43,44]

Ĵij ¼ −
1

2
fx̂i; π̂jg þ

1

4
fx̂k; π̂kgδij þ

ℏ
2l2

B
ϵijx̂jx̂k: ð6Þ

The generators satisfy the slð2;RÞ commutation relations
i½Jij; Jkl� ¼ δilJkj − δjkJil. These deformations are impor-
tant in the study of Hall viscosity [43]. Of the three
independent generators of the Lie algebra, the shear
generator

V ¼ 2λl2
B

ℏ
ðJxy þ JyxÞ ¼

λðR2
x − R2

yÞ
4

þ
�
λl4

B

ℏ2

�
ðπ2y − π2xÞ
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is of interest. Upon projecting it to the lowest Landau level,
the kinetic momenta can be neglected due to vanishing
matrix elements between any states in the same Landau
level, leaving the HIHO of Eq. (5). The Hamiltonian
HIHO is, in fact, a squeezing operator [45], which
generates Bogoliubov transformations of the LLL eigen-
states [26,41].
The Hawking-Unruh effect.—Given the common IHO

starting point of Eq. (5), we now show that scattering off
such a barrier captures both quantum Hall tunneling and
radiation in black holes. To evaluate the scattering pro-
perties, we canonically transform to the basis û� ¼
ðP̂� X̂Þ= ffiffiffi

2
p

[21], where û� are the incoming and outgoing
states, as shown if Fig. 1. In this basis, HIHO takes the
form

H ¼∓ i2ℏeffλ

�
u�∂u� þ 1

2

�
ð7Þ

which is the generator of rescalings (equivalently, dilata-
tions) of u� [46]. The eigenstates are of the form
ð1= ffiffiffiffiffiffi

2π
p Þð�u�ÞiE−1=2Θð�u�Þ, where Θðu�Þ is the

Heaviside function and E ¼ ϵ=2ℏeffλ. The expansion in
the eigenbasis of the dilatation operator is a Mellin trans-
form [47,48], just as the Fourier transform is associated
with the translation generator. The Mellin transform con-
nects the incoming and outgoing states, thus yielding the
scattering matrix (S matrix). The S matrix has the form
[7,21,36]

Ŝ ¼ 1
ffiffiffiffiffiffi
2π

p Γ
�
1

2
− iE

��
eiπ=4eπE=2 e−iπ=4e−πE=2

e−iπ=4e−πE=2 eiπ=4eπE=2

�
; ð8Þ

where Γ is the Gamma function.
The transmission probability obtained from this S matrix

yields the suggestive thermal form

jtj2 ¼ 1

1þ eβϵ
; where β ¼ π

ℏeffλ
: ð9Þ

In the quantum Hall case, the transmission probability
describes the tunneling of bulk quasiparticles between
equipotential contours of the saddle potential. Such tunnel-
ing is ubiquitous in the quantum Hall system: for instance,
in scattering between peaks or valleys in a disordered bulk
potential landscape [49,50]. The tunneling form is also
applicable for tunneling between edge channels across a
pinched Hall bar, providing a derivation for the trans-
mission probability via the bulk [38,51].
In the case of black holes, Eq. (9) can be interpreted as

the thermal distribution associated with the Hawking-
Unruh effect. Although there are many ways to understand
the effect [25,52–55], we closely follow the treatment of
Refs. [26,56–59]. To recapitulate, the thermal distribution
stems from comparing vacua associated with inertial and

accelerating observers. Specifically, we consider the vac-
uum state of a fermionic field [satisfying Eq. (1)] in a
Minkowski (inertial) spacetime ðt; xÞ. A uniformly accel-
erating observer characterized by “Rindler coordinates”
ðτ; ξÞ, where t ¼ eξ sinhðτÞ and x ¼ eξ coshðτÞ, observes a
different vacuum. Note that translations of τ generated by
the “Rindler Hamiltonian” correspond to Lorentz boosts in
ðt; xÞ. In Minkowski spacetime, we can mode expand the
field in the basis of plane waves eiωv (v ¼ x − t is the
“light-cone” coordinate). The expansion of the field in
terms of the Rindler space is then in the eigenbasis
eiΩðτ−ξÞ ¼ viΩ. The Lorentz boost generator relates the
modes in the two frames; a calculation shows that the
fields are related by a Bogoliubov transformation [60,61].
Due to the Bogoliubov transformation, the Minkowski
vacuum is perceived as a thermal distribution, such as
depicted in Eq. (9), for the Rindler observer. In the presence
of a black hole, such an analysis results in the Hawking
radiation seen by an asymptotic observer [56,57].
It might be surprising that the two disparate platforms—

one a relativistic spacetime and the other a quantum Hall
system—exhibit such similarities. The connections are far
from cursory and emerge from the underlying symmetry
transformations: first, consider the 2þ 1-dimensional
Minkowski spacetime ðt; x⃗Þ with the metric ds2 ¼
dt2 − dx⃗2. The Lorentz boost is one of the generators of
the full spacetime symmetry algebra soð2; 1Þ. In the
quantum Hall system, the projected saddle potential (or
the IHO/dilatation operator) is one of the generators of
transformations that preserve the commutator ½Rx; Ry� ¼
−il2B. The generators respect a spð2;RÞ algebra. These two
Lie algebras are isomorphic, and they coincide with that of
area/flux preserving deformations given below [Eq. (6)].
Similarly, we can relate quantum states in the two situations
as well. Note that the Rindler Hamiltonian and the IHO/
dilatation operator in the LLL share similar eigenfunctions,
upon identifying Ω ¼ E − i=2, where the extra 1=2 is a
result of the noncommutativity of the position and momen-
tum in the quantum Hall case. In the relativistic derivation,
this extra 1=2 arises from the boost acting on the spin
component of the fermionic fields [62]. As recently detailed
[63], these modes determine the Bogoliubov coefficients
through the Mellin transform and lead to Eq. (9) in both
cases. This parallel between the quantum Hall transmission
probability and the Hawking-Unruh effect was first
explored for edge states in Ref. [26]; here, we have
generalized the treatment to bulk quasiparticle scattering.
We emphasize that there is a distinction in the way the

IHO relates to the two black hole phenomena considered in
this work. The Hawking-Unruh effect explicitly involves
second quantization and quantum effects across the event
horizon, and the IHO appears here as the Rindler
Hamiltonian corresponding to boosts. In contrast, black
hole scattering concerns IHO potentials outside the event
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horizon. Moreover, the associated QNMs that we now turn
to are present in both quantum and classical situations.
Quasinormal modes.—QNM decay was originally pre-

dicted in the context of the stability of Schwarzschild black
holes by Vishveshwara in Ref. [32] as damped outgoing
oscillations in response to incoming Gaussian wave pack-
ets. This phenomenon has come to be a central point of
study in black hole physics [28,64–70]. Here, our map of
black hole scattering to the quantum IHO problem [33,35]
in Eq. (3) and the resultant S matrix [Eq. (8)] enable us to
explicitly characterize these damped oscillations, even if to
the simplest approximation. The map also connects the
black hole QNMs to previously unexplored dynamics of
quantum Hall systems in a saddle potential.
The Smatrix of Eq. (8) directly accesses the QNMs in its

pole structure when analytically extended to the complex
energy plane [71]. Specifically, the residues of the poles are
resonant (quasistationary, or Gamow) states [72,73]. These
states explicitly decay in time, and thus lie outside the
standard Hilbert space [74,75]. Note that this decay does
not require any nonunitary time evolution; rather, it is a
consequence of the (purely outgoing) boundary conditions
on the states. This can be compared with dissipation in the
Landauer-Buttiker formalism for conductivity, where decay
comes as a consequence of the boundary condition on
states in the reservoir [76]. The S matrix for the IHO in
Eq. (8) has poles at En ¼ −iðnþ 1

2
Þ; n ¼ 0; 1; 2;…, com-

ing from the Gamma function [see Fig. 2]. In order to probe
these poles, as in both quantum scattering [71] and black
hole perturbations [28,31], we employ a dynamic scattering
process of impinging wave packets onto the potential rather
than energy eigenfunctions.
A typical incident wave packet, as shown in Fig. 2, is

composed of a superposition of energy states: jψ ini ¼R
dϵfðϵÞjϵi. For simplicity, we take fðϵÞ to be a Gaussian

centered at an energy ϵ� with width δϵ. Importantly, the
effect of the resonant QNM poles becomes manifest in the
reflected wave at position x only for time t > τ log jx=lj,
where τ ¼ ð2ℏeffλÞ−1 and l is the oscillator length. This
can be understood from the classical trajectory of the
model, x ∼ et=τ. For widths of δϵ ≪ ℏeffλ, the decay is
governed by the residue of a single pole. For example, the
reflected QNM decay due to the n ¼ 0 pole has the
spatiotemporal form

Ψr0 ∼ e−t=τelog j
ffiffi
2

p
x=lj: ð10Þ

This shows that QNM decay gives the asymptotic descrip-
tion of the change in probability as a scattered wave packet
passes a (fixed) distant point.
The scattered packet also undergoes oscillations, as

depicted in Fig. 2(c). For any fixed position, Fig. 2(d)
depicts the characteristic temporal decay. These plots only
take into account the pole at n ¼ 0. Although we study
resonances here as arising from the poles of the S matrix,

they can be equivalently cast as states in a rigged Hilbert
space having complex eigenenergies [72–75,77] arising in
an open system with purely outgoing boundary conditions.
It is these boundary conditions that allow for seemingly
nonunitary decay. Such QNM decay arises in any system
having a potential landscape characterized by a local
maxima, such as in Gamow’s theory of radioactivity
[11]. Thus, this analysis predicts the existence of black-
hole-type QNMs in our quantum Hall setting.
QNMs in physical observables.—A direct measure of

QNM decay would require a time-resolved nonequilibrium
setting. In the black hole situation, the LIGO breakthrough
recorded ringdown signals in cataclysmic black hole
mergers, ushering in the era of multimessenger astronomy
and highly suggestive of QNM behavior [78]. For a
Schwarzschild black hole of one solar mass, the calculated
decay time is 0.35 ms [79]; the decay time in the
remarkable first measurement by LIGO from the binary
black hole merger was 4 ms [80].
We now propose a setup in the quantum Hall situation

for observing QNMs and derive analogous estimates. As
shown in Fig. 1, a pinched point contact geometry creates a
saddle potential in the bulk. The sources of bulk or edge
state quasiholes undergo saddle-potential scattering and
tunneling as described above. An indirect measure of QNM
poles in the scattering matrix would be a Lorentzian form
for the associated tunneling conductance, known as the
Breit-Wigner distribution [81]. A direct measure would
require a dilute beam of incoming quasiholes [82] that
could enable time-resolving QNMs in the outgoing beam.
Considering a point contact of width d, for applied voltage

FIG. 1. (a) Schematic of the inverted harmonic oscillator
potential and its scattering features of (i) regular transmission
(T) and reflection (R) of an incident state (I); and (ii) temporally
decaying quasinormal modes (QNMs), as applicable to two
physically distinct phenomena [Figs. 1(b) and 1(c)]. (b) Dynamics
of a field in a black hole spacetime resulting in (i) Hawking-
Unruh radiation, and (ii) signature QNMs associated with black
hole ringdown. (c) Scattering in the quantum Hall lowest Landau
level via a saddle potential leads to (i) quasiparticle tunneling; and
(ii) as we predict, QNMs that could be observed for dilute enough
quasiparticle sources.
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V and a background magnetic field B, we have that τ ¼
d2B=2V and λ ¼ eV=d2. Putting in typical numbers for a
split-gate graphene junction [83], we find that τ ∼ 400 ps,
whereas ℏeffλ ∼ 125 mK ≪ ℏωc and lB ∼ 5 nm. We
anticipate then that the ringdown associated with quasihole
wave packets should be observable at a distance of order
100 nm from the point contact at times on the order of
nanoseconds. Finally, we note that realistic scattering
potentials would have a finite range, unlike the unbounded
IHO; the Pöschl-Teller potential yields a tractable candidate
for such analyses [39,84]. We suggest that the actual
recorded temporal decay in a given measurement would
serve to recreate the underlying potential.
In conclusion, we have demonstrated that black hole and

quantum Hall scattering dynamics naturally fall under an
common umbrella dictated by properties of the inverted
harmonic oscillator. These parallels not only draw con-
nections between well-known effects but offer ground for
unearthing new phenomena in both realms, such as QNMs
in quantum Hall systems. We expect non-Poisson correc-
tions to the current correlation function in quantum Hall
noise experiments to provide an additional window into
these temporally decaying modes. We hope that these
parallels allow for future work to employ the quantum
Hall system for even studying black holes and IHO physics
in the context of recent connections to quantum chaos [13–
15,85–88]. Our symmetry-based arguments also suggest
several other experimentally accessible realizations of

relativistic kinematics in the quantum Hall system, such
as Thomas precession. Thus, in drawing specific parallels
between gravitational and quantum Hall physics, and
transferring lessons from black hole scattering to new
predictions in point contact geometries, we hope to have
planted seeds of inspiration for the fertile exchange of ideas
between the two realms.
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