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Fixed-node diffusion Monte Carlo (FNDMC) method is a stochastic quantum many-body approach that
has a great potential in electronic structure theory. We examine how FNDMC total energy EðNÞ satisfies
exact constraints, linearity and derivative discontinuity, versus fractional electron number N, if combined
with mean-field trial wave functions that miss such features. H and Cl atoms with fractional charge reveal
that FNDMCmethod is well able to restore the piecewise linearity of EðNÞ. The method uses ensemble and
projector ingredients to achieve the correct charge localization. A water-solvated Cl− complex illustrates
superior performance of FNDMC method for charged noncovalent systems.
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Motivation.—Fixed-node diffusion Monte Carlo
(FNDMC) method is a many-body stochastic quantum
Monte Carlo (QMC) projector approach [1–4] that has been
popular in electronic structure theory for its accuracy,
scalability, and versatility [5–9]. FNDMC method acts in
a continuum position space; for a Hamiltonian Ĥ it projects
out an exact ground state (GS) Ψ that has nonzero overlap
with the antisymmetric trial state ΨT , in imaginary time τ:

Ψ ¼ lim
τ→∞

exp½−τðĤ − ETÞ�ΨT; ð1Þ

where ET is an offset energy that keeps the norm of Ψ
asymptotically constant. The total FNDMC energy is an
upper bound to the exact energy [10] and the related FN
bias goes quadratically with the nodal displacement error
[4]. ΨT can be well sophisticated so that the related FN bias
becomes negligible [11,12], nevertheless, practical
FNDMC simulations feasible for large systems require
simple and efficient Ansätze like the popular Slater-Jastrow
wave function [13], ΨT ¼ ΨSJ, where ΨS is a single Slater
determinant and J is a positive-definite explicit correlation
Jastrow term [14].
Mean-field theories used to produce ΨS, including

density functional theory (DFT) [15], as well as the states
ΨS and ΨT (see below), however, miss fundamental
constraints on exact electronic structure theory: the total
energy EðNÞ as a continuous function of a particle number
N must show piecewise linear relationship with possible
derivative discontinuities at integer N [16–18]. Lack
thereof has been referred to as (de)localization error and
it has severe consequences; it leads to an artificial charge
adjustment and related spurious energy minimization
which causes poor predictivity of charge-transfer, reaction
barriers, band gaps, or noncovalent interactions (e.g.,
solvation of ions) [19,20]. In addition, EðNÞ must also

satisfy the constancy condition of fractional spin [18]
important for correct description of strong correlation.
Here we examine how FNDMC method satisfies linear-

ity of EðNÞ for fractional N, and, derivative discontinuity at
integer N, if combined with ΨT based on popular spin-
restricted mean-fieldΨS that show unphysical convex EðNÞ
dependency [20]. Such an analysis is important, for
instance, to understand if the method is able to provide
right energetics of charged noncovalent systems [19] for the
right reasons. We consider atoms with fractional charge, H
and Cl, to show that FNDMCmethod is well able to restore
the piecewise linearity of EðNÞ from the states that do not
possess such a property.Walker population analyses indicate
that the ensemble and projector features are both operative in
this achievement. Insights gained from the water-solvated
Cl− complex suggest that accuracy and robustness of
FNDMC simulations in charge-involving noncovalent inter-
actions relate to the accurate charge localization.
Theory.—The effective fractional charge per atom was

achieved for both H and Cl by modeling a cube (system)
composed of 8 atoms (subsystems) of the same type
separated enough so that the interactions between the
subsystems can be neglected (infinite-separation limit).
The Hamiltonian of such a system with M ¼ P

8
i¼1Ni

electrons,

Ĥ ¼
X8
i¼1

Ĥi; ð2Þ

satisfies the Schrödinger equation,

ĤΨkðMÞ ¼ EðMÞΨkðMÞ; ð3Þ

where
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ΨkðMÞ ¼ Â

�Y8
i¼1

Ψi
αiðNiÞ

�
ð4Þ

is a kth gðMÞ-times degenerate antisymmetric GS wave
function ½gðMÞ ¼ Q

8
i¼1 giðNiÞ� assembled as an antisym-

metrized product of individual subsystem giðNiÞ-times
degenerate wave functions Ψi

αiðNiÞ that each satisfies

ĤiΨi
αiðNiÞ ¼ EiðNiÞΨi

αiðNiÞ: ð5Þ

Â is an M-electron antisymmetrization operator, and,

EðMÞ ¼
X8
i¼1

EiðNiÞ ð6Þ

is a corresponding degenerate total energy of the system.
Addition of an integer charge q to such a system adds
effective charge q=8 per subsystem thus enabling fractional
charge as well.
QMC simulations of systems in a large separation limit

require additional considerations for the lack of conven-
tional VMC thermalization within usual simulation times
(see Methods), and, nonergodicity [21–23] (electron locali-
zation on specific subsystems) due to the branching term in
FNDMC simulations that eliminates configurations with
small weights, including those with electrons possibly
attempting to diffuse between the distant subsystems.
Nevertheless, we argue that the total energy expectation
values hEi from such FNDMC simulations are energeti-
cally correct.
In contrast to ergodic simulation where each walker

would sample the mixed GS

ΨðMÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
gðMÞp XgðMÞ

k¼1

ΨkðMÞ; ð7Þ

which is an eigenstate of Ĥ and leads to totally symmetric
density, each walkerRj ¼ ðr1; r2; r3;…; rNÞj in a properly
initialized (from Ψ2

T) nonergodic equilibrium FNDMC
simulation randomly samples just one of the degenerate
GS wave functions Ψk that generates symmetry-broken
density and contributes to hEi according to the so-called
mixed distribution ΨkΨT irrespective of its specific locali-
zation fNigj (i.e., a specific set of occupation numbers of
the identical subsystems, labeled by i, here obtained by
counting electrons in corresponding position-space
octants). For ΨT that satisfy hΨT jΨki ≠ 0 for all k, like,
e.g., our ΨT based on a spin-restricted Slater determinant, it
is not hard to accept that the population-based hEi, of our
sole interest here, is not affected by the walker localization
and related density symmetry breaking.
Hydrogen cube.—First, we present the results obtained

for the H8 cube [20] with an edge of a ¼ 1000 Å, 0–16

electrons, and singlet spin multiplicity (Nα ¼ Nβ), allowing
us to study essentially isolated H atom with an effective
fractional charge in the range 0 ≤ N ≤ 2, i.e., along the
Hþ → H → H− pathway and 0.25e increments (Fig. 1).
In agreement with the previous fractional-charge studies
of H [18,20,24], we find that the considered mean-field
methods, Hartree-Fock (HF) and DFT with the Perdew-
Burke-Ernzerhof (PBE) [25] functional, miss linearity and
the derivative discontinuity of EðNÞ and show unphysical
convex behavior instead (Fig. 1, red, blue). Interestingly,
FNDMC simulations with related ΨT (cf. Fig. 3) recovered
piecewise linear EðNÞ dependency within the statistical
resolution (Fig. 1, black). The results were indistinguish-
able for HF and PBE (more ΨT types were thus not
considered). FNDMC simulation with ΨT based on PBE
orbitals produced electron affinity EA(H)=0.713(1) eV to
be compared vs the experimental value of 0.754 eV [26]. A
slight discrepancy of ∼0.04 eV is attributed to the use of
the effective core potential (ECP) and residual FN bias due
to 1-determinant [27]. Note that if the FNDMC method
satisfies the linearity condition, the quality of the nodal
surface determines only the slope of the actual EðNÞ
segment due to linearity-GS correspondence and the
FNDMC projector nature (see below).
Chlorine cube.—Next we consider the Cl8 cube

(a ¼ 1000 Å) in order to examine how FNDMC simulation
describes fractional charge in a many-electron system. We
consider only singlet states (Nα ¼ Nβ). Effective fractional
charge per Cl atom ranges between 16 ≤ N ≤ 18 (1Clþ →
2Cl → 1Cl−) with 0.25e increments (Fig. 2). We observe
that although the mean-field methods (HF, PBE, HSE06
[28]) miss linearity and derivative discontinuity [19] at
point N ¼ 17 per atom (neutral Cl), the FNDMC simu-
lation well recovers both features from the related ΨT and
produces accurate EAðClÞ ¼ 3.64ð2Þ eV consistent with
experiment (3.613 eV [29]). It appears that FNDMC is well

FIG. 1. Hydrogen cube: total energy EðNÞ per atom vs electron
occupation number N per atom obtained by mean-field (HF,
PBE) and FNDMC (DMC) methods. FNDMC error bars (not
shown) are smaller than the symbol size.
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able to produce correct energetics in fractional-charge
systems.
Wave function analysis.—Let us now focus on how

FNDMC method achieves linearity of EðNÞ in fractional
charge models. As mentioned above, the electrons within
each walker localize on specific centers, leading to the
correspondence Rj ↔ fNigj between the explicit (alive)
walker position (varying along simulation) and subsystem
occupation vector in occupation representation (fixed dur-
ing the nonergodic simulation unless the walker dies out).
Since each walker randomly samples just one of the
degenerate GS wave functions Ψk, and the subsystem
occupations randomly vary between the walkers, we find
it convenient to introduce irreducible subsystem occupation
vector λ⃗j obtained as a descending-ordered set of subsystem

occupations fNigj, λ⃗j ¼ ðmaxfNigj;…;minfNigjÞ. In
addition, we introduce a corresponding vector of total
subsystem spin momenta σ⃗j ordered in a descending way

for each subset of identical λk. The pair ðλk; σkÞj, labels the
state of a subsystem k (after reordering) with λk electrons
and a total spin momentum σk, as sampled by the walker j.
We arrive at the more convenient correspondence,
Rj ↔ jλ⃗; σ⃗ij, that enables equal-footing comparisons
between the walkers irrespective of the specific localization
(and local position), and, unambiguous analysis of the
system state within FNDMC simulation. We are interested
in coefficients fcλ⃗;σ⃗g of an expansion of irreducible GS,

ΨðR; τÞ ¼
X
λ⃗;σ⃗

cλ⃗;σ⃗jλ⃗; σ⃗i; ð8Þ

subject to
P

λ⃗;σ⃗ jcλ⃗;σ⃗j2 ¼ 1, that could be obtained from a
stochastic realization of ΨðR; τÞ sampled by K walkers
within equilibrium QMC simulation,

ΨðR; τÞ ¼
XK
j¼1

δ½R −RjðτÞ�; ð9Þ

by virtue of the projectors,

ΨðR; τÞ ¼
X
λ⃗;σ⃗

XK
j¼1

jλ⃗; σ⃗ihλ⃗; σ⃗jδR;RjðτÞi: ð10Þ

ForM electrons in the system with a specific partition λ⃗j
between the subsystems, the GS consistent with the
subsystem total energy convexity condition [16],

EiðNÞ ≤ 1

2
½EiðN þ 1Þ þ EiðN − 1Þ�; ð11Þ

requires that each distant subsystem contains a ¼ intðM=8Þ
electrons, and, for nonzero b ¼ M − 8a, b subsystems
contain 1 additional electron each. We assume for the
moment that σ⃗ is such that it minimizes the total energy and
couples to the desired total spin momentum. For M ¼ 10,
any 2 of the 8 subsystems must contain 2 electrons and the
remaining subsystems 1 electron each, λ⃗ ¼ ð2; 2; 1; 1; 1; 1;
1; 1Þ, assuming a spin GS, e.g., σ⃗ ¼ ð0; 0; 0.5; 0.5; 0.5;
−0.5;−0.5;−0.5Þ for a singlet H8 cube. Other partitions λ⃗
(or non-GS σ⃗) represent excited-state configurations, e.g.,
λ⃗ ¼ ð2; 2; 2; 1; 1; 1; 1; 0Þ, or, λ⃗ ¼ ð3; 1; 1; 1; 1; 1; 1; 1Þ.
Therefore, for the special case of distant identical sub-
systems, GS in the occupation-spin space may be conven-
iently identified by observing just 1-term in Eq. (8)-like
expansions (note that this may not be an exact fermionic GS
of Ĥ for the presence of fixed-node bias).
In Fig. 3, we compare the total energiesEðNÞ obtained for

theH cube byVMCsampling of jΨ2
Sj and jΨ2

T j, andFNDMC
simulation using ΨT . Clearly, contrary to the piecewise
linear FNDMC total energy, the VMC total energies show

FIG. 2. Chlorine cube: total energy EðNÞ per atom vs electron
occupation numberN per atom obtained by mean-field (HF, PBE,
HSE06) and FNDMC (DMC) methods. FNDMC error bars (not
shown) are smaller than the symbol size.

FIG. 3. Hydrogen cube: total energy EðNÞ per atom vs electron
number per atom from VMC with ΨS (S) and Slater-Jastrow ΨT
(SJ) using PBE orbitals, and, FNDMC (DMC) simulation.
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convex behavior, although in the case of SJ, it seems that the
derivative discontinuity starts to develop due to the partial
excited-state suppresion by the Jastrow term [30–32]
(examples follow in the next paragraph). For ΨS, the
EðNÞ curve is indeed consistent with the HF method
reported in Fig. 1 within the statistical error.
Analysis of the relatedwalker ensembles in terms of jλ⃗; σ⃗i

configurations revealed multiconfiguration states contain-
ing large fractions of excited states for VMC, and, only GS
configurations for FNDMC equilibrium ensembles, for all
N, orbital types, and the Cl cube as well (cf. Fig. 5, Sec. I of
the Supplemental Material [33]). For instance, PBE-based
ΨS=ΨT of the neutralH cubewithN ¼ 1 electrons contained
only 6%/11% of GS configurations and 6=5 types of
configurations, whereas Ψ sampled by FNDMC simulation
using ΨT contained GS configurations only. For N ¼ 1.25,
ΨS=ΨT contained 22%/38% of GS configurations and 6=4
configuration types, whereas, again, FNDMC ensemble
contained 100% of GS. Details of such analyses for the
H and Cl cubes, DFT and HF orbitals, VMC and FNDMC
methods, and all consideredN, are reported in Supplemental
Material [33], Sec. IV.
The observation that FNDMC simulation produces

100% of GS configurations in our fractional-charge models
is very important as it may improve our understanding
of the method robustness in charged [34] and charge-
transfer systems (e.g., reactions [35,36], excited states
[37,38]). It has been shown [17] that the linearity of
EðNÞ for fractional N, and thus accurate charge localiza-
tion, directly relates to the ability of a given method
to produce only GS occupations. Namely, if the total
energy of the system can be expressed [using identity
EiðλiÞ ¼ EjðλiÞ] as a linear combination of subsystem total
energies,

EðMÞ ¼ ð8 − bÞE1ðaÞ þ bE1ðaþ 1Þ; ð12Þ
with a and b defined above and corresponding to the GS,
then EðNÞ ¼ EðMÞ=8 with N ¼ M=8 is a piecewise linear
function. That said, if an additional electron is put into a
subsystem orbital in such a way that the GS of the system is
maintained, then energy increments within a given segment
of EðNÞ are identical until the same-type orbitals are filled
in all subsystems, which finishes a given (linear) segment.
The success of FNDMC method in recovering the EðNÞ
piecewise linearity is thus attributed to the ensemble nature
of the method causing that each electron resides on a
specific subsystem at a time (fractional density is only
possible via ensemble), and, projector property that appa-
rently projects out proper (GS) configurations in charge-
spin occupation space.
Application to Cl−ðH2OÞ6.—Finally, we consider a

practical application of the concepts discussed above for
noncovalent interactions of charged systems [34]. It was
found that FNDMC simulation provides correct EðNÞ
dependency for the Cl cube contrary to the mean-field
(Fig. 2). In systems with a charged Cl atom, one would thus
generally expect that FNDMC results would be more robust
than, say, DFT, and insensitive to the ΨT orbitals. We have
considered interaction energies [9] (ΔE) of Cl−ðH2OÞ6
complex by various DFT approximations and FNDMC
method using the same DFT functionals. Figure 4 summa-
rizes the results and illustrates superior robustness ofFNDMC
simulations that reproduces the reference CCSD(T)/com-
plete-basis-set results towithin 1% for allΨT . In contrast,ΔE
fromDFTand HF altogether varies by more than 20% due to
the known (de)localization error, as revealed by the charge-
population analysis (see Methods) detailed in Supplemental
Material [33], Sec. III. Clearly, FNDMC simulations produce
more robust and correctly more de- or localized charge
population on Cl− with respect to HF/DFT, respectively.
The qualitative difference between mean-field and

FNDMC ΔE distributions is now easy to understand.
Randomly chosen DFT determines fractional charge N
from a certain interval according to its intrinsic delocaliza-
tion error. In addition, it produces energy on a convex curve
with its intrinsic curvature, that varies between functionals
[39]. As a consequence, for a large set of DFT approxima-
tions, one obtains a large distribution of biases in the total
energy of a complex, and, consequently, inΔE, as observed.
On the other hand, if FNDMC method predicts a correct
charge localization, as expected from the results reported
above, the fractional chargeN in subsystems of a complex is
accurate andmore robust. Inaccuracy ofΨT dictates only the
slope of the linear dependency (since the method always
produces only GS charge-spin occupations), which leaves
only a limited interval of bias that can be realized with
varying (reasonable)ΨT . The dispersion of the results is thus
much smaller, or, in other words, the method is much more
robust, as observed, and we attribute its success to the
accurate charge localization.

FIG. 4. Relatative errors (RE) of the interaction energies for the
solvated anion Cl−ðH2OÞ6 complex (depicted) computed by
RHF, DFT, and FNDMC simulations using ΨT based on the
same orbitals, compared vs the CCSD(T)/CBS reference. Gray
region indicates the benchmark level (1%). FNDMC error bars
(not shown) are smaller than the symbol size.
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Summary.—Fractional-charge computations of H and Cl
atoms revealed that FNDMC method is well able to restore
the correct piecewise linear EðNÞ behavior from ΨT that
does not have such a property. Insights from the walker
population analyses, in combination with formal discus-
sions, indicate that FNDMC simulation correctly describes
EðNÞ linearity thanks to its ensemble nature and projection
property. Inaccuracy ofΨT is expected to determine only the
slope ofEðNÞ segments. This finding enables understanding
of FNDMC robustness, as demonstrated in the noncovalent
Cl−ðH2OÞ6 complex, from a new perspective. Study of
fractional spin by FNDMC simulation is underway.
Methods.—Naive simulations of cube models with an

edge of a ¼ 1000 Å would not be straightforward because
the conventional VMC equilibration times would vastly
overcome the maximum simulation times available. In
order to overcome this issue (without algorithm adjust-
ments) in an automated fashion (avoiding manual initial-
ization of configurations that may be biased by user
imagination), the walkers for large-cube FNDMC simu-
lations were initialized by ergodic VMC thermalization
and stepwise quasiadiabatic extension of the system size
starting from small a. We verified that the walker distri-
butions produced in this way sampleΨ2

T , and, in the case of
a Slater determinant with HF orbitals, VMC reproduced the
HF total energy for both H and Cl and all considered N.
This was not the case for walkers initialized directly in a
large cube. FNDMC computations used the QMCPACK [40]
code with 16k target walker populations, imaginary time
step of 0.005 a.u., and T moves [41]. Nuclei were
represented by Burkatzki-Filippi-Dolg effective core poten-
tials [42]. Single-determinant Slater-JastrowΨT were based
on orbitals expanded in 1s-augmented valence triple-zeta
(VTZ) one-particle basis sets without highest angular
momentum channels [43] obtained with a tight SCF
convergence (Gaussian G09 [44]). Jastrows containing
up to electron-electron-nucleus terms, with a cutoff radius
of 10 a.u., were optimized by the linear method [45], as
usual, but cube simulations reused Jastrows optimized for
H− and Cl, respectively. The structure of Cl−ðH2OÞ6
(reported in the Supplemental Material, Sec. II [33]) was
optimized at the MP2/aug-VTZ level (G09). The charge
populations of the Cl atom in Cl−ðH2OÞ6 complex
(Supplemental Material, Sec. IV [33]) were counted within
a sphere around the Cl atom, with a radius r ¼ 2.033 Å
optimized to reproduce the CCSD natural charge, in order
to obtain comparable population analysis. The used ensem-
bles of walkers sampled ΨS with orbitals obtained from
various functionals, and, the FNDMC mixed distribution.
Approximately corrected “pure” charges were obtained via
correction hΨjÔjΨi ≈ 2hΨjÔjΨTi − hΨT jÔjΨTi [46].
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