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Recent numerical studies on glassy systems provide evidence for a population of non-Goldstone modes
(NGMs) in the low-frequency spectrum of the vibrational density of states DðωÞ. Similarly to Goldstone
modes (GMs), i.e., phonons in solids, NGMs are soft low-energy excitations. However, differently from
GMs, NGMs are localized excitations. Here we first show that the parental temperature T� modifies the
GM/NGM ratio in DðωÞ. In particular, the phonon attenuation is reflected in a parental temperature
dependency of the exponent sðT�Þ in the low-frequency power law DðωÞ ∼ ωsðT�Þ, with 2 ≤ sðT�Þ ≤ 4.
Second, by comparing sðT�Þ with sðpÞ, i.e., the same quantity obtained by pinning a p particle fraction,
we suggest that sðT�Þ reflects the presence of dynamical heterogeneous regions of size ξ3 ∝ p. Finally,
we provide an estimate of ξ as a function of T�, finding a mild power law divergence, ξ ∼ ðT� − TdÞ−α=3,
with Td the dynamical crossover temperature and α falling in the range α ∈ ½0.8; 1.0�.
DOI: 10.1103/PhysRevLett.123.155502

Introduction.—At small enough frequencies ω, the den-
sity of states DðωÞ of a three dimensional glass follows
Debye’s law DðωÞ ∼ ω2. This is because at large enough
length scale glasses are continuum media and thus phonons
dominate the low frequency spectrum [1]. However, com-
pared with crystals, glasses show thermodynamic anomalies
at low temperatures. For instance, the thermal conductivity
κðTÞ scaleswithT2 [2] instead ofT3, as predicted byDebye’s
law [1]. Moreover, also the specific heat Cv below 1 K
deviates from Debye’s law acquiring a linear dependency on
T [2]. Remarkably, these anomalies are shared by a broad
class of glassy systems providing evidences of universality.
As it has been noticed in Ref. [3], in disordered media

and small ω, DðωÞ takes contributions from both extended
Goldstone bosons, e.g., phonons in structural glasses or
spin waves in Heisenberg spin glasses, and non-Goldstone
modes, i.e., excitations that are not generated by the
spontaneous symmetry breaking of a continuous sym-
metry. The Goldstone contribution gives rise to the
Debye spectrumDðωÞ ∼ ωd−1, with d the number of spatial
dimensions. The non-Goldstone sector is still soft, i.e.,
normal modes whose density of states vanishes as a power
law DðωÞ ∼ ωs [3], but it is populated by localized modes.
Only in the last few years, thanks to the possibility of
eliminating Goldstone bosons from the low-energy spec-
trum [4,5] or discriminating nonextended modes from the
extended ones [6], it has been possible to observe numeri-
cally the non-Goldstone sector in numerical simulations
obtaining that, in agreement with arguments suggested in

Ref. [3], non-Goldstone modes give a contribution to DðωÞ
that scales with s ¼ 4.
In a previous work, we showed that a population of

soft-localized modes with DðωÞ ∼ ωsðpÞ and 2 ≤ sðpÞ ≤ 4
emerges in the low-frequency spectrum of a three-
dimensional model of glass when a fraction p of particles
are randomly frozen [7]. In particular, the value of the
effective exponent sðpÞ starts from s ¼ 2 at p ¼ 0 and
approaches 4 above a threshold pth value that is of the order
of 50% of frozen particles.
In this Letter we study the properties of the vibrational

density of states of a model of glass in its inherent states,
i.e., configurations that minimize the potential energy at
T ¼ 0. Inherent states have been obtained after a fast
quench from equilibrium configurations at the parental
temperature T�. In agreement with Ref. [8], the slope in
the tail of DðωÞ depends on the parental temperature T�.
Moreover, as a first result, we observe a progressive
attenuation of the Debye spectrum in favor of the non-
Debye one as T� approaches from above the dynamical
crossover temperature Td.
It turns out that the Debye scaling s ¼ 2 holds at

T� ≫ Td, s increases by decreasing T�, and it saturates
to s ¼ 4 right above Td. This crossover between Debye to
non-Debye is accompanied by a progressive localization
of the normal modes below the boson peak. We will show
that it is possible to relate the suppression of extended
excitations with the proliferation of spatially heterogeneous
regions. We observe that the behavior of sðT�Þ mirrors that
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of sðpÞ observed in Ref. [7], indicating an increase in the
size of frozen heterogeneous regions as T� decreases. This
finding suggests a way for measuring the size of these
regions.
In particular, we are able to perform a mapping between

the properties of the inherent states of the randomly pinned
system at high parental temperatures, i.e., ðT� ¼ ∞; pÞ,
with the inherent structures of the same system at low
temperatures without frozen particles, i.e., ðT�; p ¼ 0Þ.
Defining sðT�Þ≡ sðT�; p ¼ 0Þ and sðpÞ≡ sðT� ¼ ∞; pÞ
and looking at the solution of sðT�Þ ¼ sðpÞ, we will show
that the resulting curve pðT�Þ provides an estimate for a
correlation length ξ, being ξ≡ ξpin ¼ ðpN=ρÞ1=3. We are
then able to extract the behavior of ξpin as a function of T�.
It turns out that ξpin is compatible with a power law
divergence at Td, ξ3pin ¼ ðT� − TdÞ−α and α not far from one.
It is worth noting that pinned particles have been inten-

sively employed for gaining insight into the structural and
dynamical properties of glassy materials in both, analytical
models [9–11] and numerical simulations [12–22]. Here, in
parallel with the study of DðωÞ as a function of T�, we use
the method of random pinning to gain insight into the T�
dependence of the growing correlation lengths in structural
glasses through the low-frequency spectrum of DðωÞ.
Methods.—We consider a standard 50:50 binary mixture

composed of N ¼ NA þ NB spherical particles at density
ρ ¼ N=L3 ¼ 1 [23–25]. The system is enclosed in a cubic
box of side L where periodic boundary conditions are
considered. Particle radii are σA and σB with σA=σB ¼ 1.2
and σA þ σB ≡ σ ¼ 1 [24]. Details about numerical sim-
ulations can be found in the Supplemental Material [26]
which includes Refs. [27–31]. We consider hybrid
Brownian and swap Monte Carlo simulations that combine
the numerical integration of the equations of motion with
swap Monte Carlo moves [24]. For computing dynamical
properties, i.e., the dynamical temperature Td, the four-point
susceptibility χ4ðtÞ [32,33], and the four-point correlation
S4ðq; tÞ [32,34–36], we consider the Brownian evolution
of thermodynamically stable configurations obtained
through hybrid swap-Brownian dynamics for system sizes
N ¼ 103; 203. The minimization of the mechanical energy
has been performed through the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm [28]. We then compute
the eigenvalues of the dynamical matrix, i.e., the Hessian
matrixM, and thus we obtain the spectrum of the harmonic
oscillations around the inherent structure.We also considered
configurations equilibrated at high temperatures, i.e.,
T� ≫ Td, where a finite number of particles pN, with
p ∈ ½0; 1�, are maintained frozen during the minimization
(see Ref. [7] for details). The eigenfrequencies are ω2

κ ¼ λκ,
with λκ the κth eigenvalue of M. We focus our attention
on the cumulative FðωÞ ¼ R

ω
0 dω0Dðω0Þ of the density of

states DðωÞ ¼ N −1P
κ δðω − ωκÞ, with N the number

of nonzero modes. We study the localization property of
the normal-mode ω through the inverse of the participation

ratio RðωÞ≡P
i jeiðωÞj4=ð

P
i jeiðωÞj2Þ2 where eiðωÞ is

the eigenvector of the modeω [37]. Let r≡ ðr1;…; rNÞ be a
configuration of the system thermalized at temperature T�.
We indicate with r0 ≡ ðr01;…; r0NÞ the configuration that
minimizes themechanical energy.We also quantify the effect
of the parental temperature on the inherent configuration
through the distribution PðΔrÞ ¼ N−1 P

i δðΔr − ΔriÞ,
with Δri ≡ jri − r0i j, i.e., the total displacement covered
by the particle i for reaching the inherent configuration
r0 starting from r, i.e., the thermally equilibrated one.
Finally, we compare the behavior of ξpin with the dynamical
correlation length ξdyn that is obtained by fitting the four-
point correlation function S4ðq; τ4Þ to an Ornstein-Zernike
expression [34]. The structural relaxation time τ4 has been
evaluated looking at the peak of the χ4ðtÞ susceptibility
[38,39]. Details about the computation are provided in the
Supplemental Material [26].
Results.—Let us start with discussing the effect

of the parental temperature T� on the cumulative function.
FðωÞ is shown in Fig. 1(a) for different T� and system size
N ¼ 103. Approaching the dynamical temperature, i.e.,
T�=Td → 1, the exponent of the low-frequency power
law FðωÞ ∼ ωsðT�Þþ1 increases as temperature decreases,
departing from the Debye value s ¼ 2 to higher values.
A dependency of s on both the protocol adopted for cooling
down the system and T� has been observed also in Ref. [8].
As shown in Fig. 2(a), sþ 1 → 5 as T� → Td. The
exponents have been computed fitting the tail of FðωÞ
below the boson peak [40,41] with a power law. Since the
boson peak is populated by extended modes, we select the
low-frequency sector through the R value of the mode ω.

(a)
(c)

(b) (d)

FIG. 1. (a) Cumulative density of states FðωÞ as a function of
the parental temperature T� for N ¼ 103. Temperatures decrease
from yellow to blue, T�=Td ¼ 1.87; 1.56; 1.50; 1.44; 1.38; 1.31;
1.25; 1.19; 1.13; 1.06. Inset: Inverse participation ratio RðωÞ.
(b) Probability distribution function PðΔrÞ of the total displace-
ment Δr by varying temperature. (c) Cumulative function FðωÞ
as the fraction of frozen particles p increases at high temperature
T�=Td ¼ 3.12. p increases from green to violet, p ¼ 0.05;
0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9. (d) PðΔrÞ at T�=Td ¼
3.12 as p increases from green to blue.
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As one can see in the inset of Fig. 1(a), below ω ∼ 0.04,
R grows as frequency decreases. Moreover, in that region,
R grows with decreasing T� (the arrow goes in the
direction of decreasing temperatures), indicating that
low-frequency modes become more localized as temper-
ature decreases. The situation is different above ω ∼ 0.04
whereR approaches the 1=N limit. The increasing inRðωÞ
and the behavior FðωÞ ∼ ω1þsðT�Þ on lowering frequency is
consistent with the presence of soft-localized modes.
In order to gain insight into the nature of the rearrange-

ments made by the system for reaching the inherent
configuration r0, we have then computed the distribution
PðΔrÞ that is shown in Fig. 1(b). The distribution becomes
peaked at lower and lower Δr values as temperature
decreases, indicating that particles in configurations at
lower temperature turn to be more caged during minimi-
zation. The red curves in Fig. 1(b) are fits to γΔr2e−Δr2=σ21 ,
with γ and σ1 adjustable parameters. One can notice the
presence of non-Gaussian tails at high temperatures that
progressively disappear for T� → Td. The non-Gaussian
tails indicate that particles travel long distances for reaching
the optimal configuration when the parental configuration
is taken at high T�. As T� decreases towards Td, particles
turn to be more caged by their neighbors and they thus
perform small uncorrelated displacements to find the closer
inherent structure. To be more quantitative, we have also
computed the true variance σ2 of the distribution PðΔrÞ,
σ2ðT�Þ [see Figs. 2(b), 2(d)].
A similar phenomenology is observed looking at the

system at high T� but including a fraction of frozen particle
during the research of the inherent structure [7]. In particular,

when the concentration of frozen particles is large enough,
moving particles are caged by the nonmoving ones. In
Fig. 1(c) the cumulativeFðωÞ is shown at T�=Td ¼ 3.12 by
varying the fraction of frozen particles p, that increases
from left to right. We have thus computed the distributions
PðΔrÞ when a fraction p of particles is maintained frozen
and the results are shown in Fig. 1(d). Again, the red curves
are the Gaussian fit. The behavior ofPðΔrÞwith increasing
the fraction of frozen particles p is qualitatively the same
obtained with decreasing temperature in the unpinned
system. This is a strong indication that the same crossover
from a spectrum dominated by soft-extended modes to
soft-localized modes takes place in both protocols, i.e.,
decreasing parental temperature or increasing the fraction
of pinned particles. The advantage of introducing ran-
domly frozen particles lies in the fact that controlling pwe
are also controlling the typical size ξpin of frozen regions.
In order to define ξ, we notice that the number of frozen
particles Np ¼ pN is naturally proportional to the volume
of frozen particles Vp, thus ξ3 ∝ pN.
In order to make quantitative progresses, we look at the

curves sðT�Þ and sðpÞ obtained from FðωÞ, as well as at
σ1ðT�Þ and σ1ðpÞ [or, equivalently, at σ2ðT�Þ and σ2ðpÞ]
obtained from PðΔrÞ. As already noticed sðT�Þ increases
with decreasing T�: this behavior is reported in Fig. 2(a).
The dashed-red line is a fit to logistic curve. Similarly,
the behavior of σ2ðT�Þ as a function of T� is reported in
Fig. 2(b). In panels (c) and (d) of the same figure we show
the same observables as a function of the fraction of
frozen particles p for configurations thermalized well
above the dynamical temperature, i.e., T�=Td ¼ 3.12.
We can thus provide a quantitative estimate of the

behavior of ξpin as a function of T� mapping the properties
of the pinned system into the properties of the thermal
system. In particular, we assume that, in a system where a
fraction p of particles are frozen randomly in space, one
introduces a correlation length ξpin ≡ ðpN=ρÞ1=3. For
inferring the correlation length ξpin in the real system,
i.e., without artificially frozen particles, we invert the
relation OðT�; p ¼ 0Þ ¼ OðT� ≫ Td; pÞ, where O is a
generic observable, and thus we obtain a function pðT�Þ
that allows us to measure ξ3pinðT�Þ. The green dashed
arrows in Figs. 2(a) and 2(c) give a pictorial representation
of the mapping we employ to infer ξpin choosing as an
observable the exponent s. The results of our analysis are
shown in Fig. 3(a) for system sizes N ¼ 103; 123.
Diamonds are obtained considering the exponents of the
power laws sðT�Þ and sðpÞ as observable O for mapping,
i.e., O≡ s. Circles refer to the true variance of the
distribution PðΔrÞ, O≡ σ2. Triangles are obtained con-
sidering the parameter σ1 from the fit of PðΔrÞ to a
Gaussian distribution (O≡ σ1). The dashed curves are
the power law ξ3pin ∼ ðT� − TdÞ−α. The exponent α has
been computed considering O ¼ s and dataset N ¼ 103

FIG. 2. (a) Slope s of the power law FðωÞ ∼ ωsþ1 as a function
of the parental temperature T� for N ¼ 103. (b) Variance of the
distribution PðΔrÞ as a function of T�. (c) Slope s as a function of
p at T� ¼ 3.12. (d) Variance of the distribution PðΔrÞ as a
function of p at T� ¼ 3.12. Dashed lines are guides to the eye. In
panels (a) and (c) the green dashed arrows sketch the mapping
employed for measuring ξpin.
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(cyan symbols), N ¼ 123 (red symbols). We then obtain
αmax ¼ 1.0 and αmin ¼ 0.8 for N ¼ 123; 103, respectively,
indicating that the exponent α varies in the range
α ∈ ½0.8; 1.0�. As one can appreciate, different observables
O provide estimates for ξ that are consistent with the same
mild power-law divergence as T� decreases towards Td.
Dynamical heterogeneities are fingerprint patterns of

glassy dynamics [42]. They suggest the existence of a
dynamical correlation length ξdyn that can be estimated
through multipoint correlation functions [33,35,36,38,39,
43,44]. We thus compute ξdyn for system sizesN ¼ 103; 203

and compare it with ξpin computed before. The result is
shown in Fig. 3(b), the green circles are ξdyn for N ¼ 103,
cyan circles refer toN ¼ 203. ξdyn has been normalized with
the value of ξ at high temperature, i.e., ξ∞ ≡ ξðT� ≫ TdÞ.

As one can appreciate, both the correlation length ξpin
and ξdyn show a mild growth that is compatible with
ðT� − TdÞ−1=3.
Discussion.—In this Letter, we have explored the

properties of the low-frequency excitations in a three-
dimensional model glass obtained by fast quench from a
well-equilibrated supercooled liquid configuration at
T ¼ T�. The values of T� spanned from high temperatures
down to the dynamical transition temperature Td. We
have shown that quasilocalized soft modes progressively
populate the low-frequency spectrum. The density of
states of these glassy modes follows a scaling law
ωsðT�Þ with 2 ≤ sðT�Þ ≤ 4. Far away from the dynamical
transition, the low-frequency spectrum below the boson
peak is well described by Debye’s law, i.e., sðT�Þ ¼ 2.
As T� decreases, DðωÞ at small ω is still power law with
an exponent that is temperature dependent and deviates
from Debye’s law. In particular, s starts to increase its
value and sðT�Þ → 4 for T� → Td. As shown here and also
before in Ref. [7], the same quasilogistic growth of s is
observed when, instead of varying the parental temper-
ature, we introduce a fraction p of frozen particles.
Moreover, the spectrum of the low-energy excitations
below the boson peak remains gapless and progressively
deviates from Debye’s law following a scaling ωsðpÞ, with
2 ≤ sðpÞ ≤ 4. In this case, sðpÞ increases as p increases
and s → 4 above a threshold value pth ∼ 0.5.
The emerging phenomenology is consistent with a

picture of heterogeneous regions where particles experi-
enced different mobilities [34,42,45]. Considering a three
dimensional system, an estimate of the typical linear size ξ
of these heterogeneous regions in the pinned system is
provided by p1=3. This argument for the scaling of ξ
together with our estimate of pðTÞ leads to an estimate
of ξðTÞ that is compatible with the inhomogeneous
mode-coupling theory discussed in Ref. [43] where ξdyn ∼
ðT − TdÞ−ν with ν ¼ 1=4.
It has been shown in Refs. [46,47] that the statistical

properties of the lowest eigenfrequency of DðωÞ can be
employed to define a static length scale whose behavior is
consistent with the point-to-set length [13,39,44,48]. Our
study shows that low-frequency modes in DðωÞ not only
regulate the growing of a static length, and thus the
changing in the thermodynamic properties of the system,
but also the growing of dynamic heterogeneous patterns.
In conclusion, we showed that DðωÞ provides useful

information about both the structural properties of the
glassy state through its inherent structures, and the dynami-
cal properties of the corresponding supercooled equilib-
rium configurations at T�. As a consequence, from DðωÞ
we can extract important information about the correlation
length of the heterogeneous regions in supercooled liquids,
which, most likely, are the ultimate origin of the instability
giving rise to the non-Goldstone modes [49–55]. A recent
experiment showed that DðωÞ results to be modified by

(a)

(b)

FIG. 3. (a) Correlation length ξ3pin defined in the main text as a
function of temperature T� and estimated through different
observables for N ¼ 103; 123. Diamonds refer to the sðT�Þ ¼
sðpÞ method, circles to σ2ðT�Þ ¼ σ2ðpÞ, and triangles using σ1,
i.e., fitting PðΔrÞ to γΔr2e−Δr2=σ21 and thus considering
σ1ðT�Þ ¼ σ1ðpÞ. The inset highlights the behavior of ξ3pin
computed through the exponent s for N ¼ 103; 123, cyan and
red symbols, respectively. Dashed lines are fits to the power
law ðT� − TdÞ−α with α ¼ 0.8 (red) and α ¼ 1.0 (cyan).
(b) Comparison between the correlation length ξpin and the
dynamic length ξdyn. ξ∞ indicates the value of ξ at high
temperatures. The red-dashed line is the best fit ðT� − TdÞ−α=3
with α ∼ 0.8.
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natural hyperaging [56]. As a future direction, it would be
interesting to investigate numerically DðωÞ in the aging
regime for understanding the relation between the non-
Debye spectrum and aging in glasses.
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