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A transition from a d2 to a d law is observed in molecular dynamics (MD) simulations when the diameter
(d) of an evaporating droplet reduces to the order of the vapor’s mean free path; this cannot be explained by
classical theory. This Letter shows that the d law can be predicted within the Navier-Stokes-Fourier (NSF)
paradigm if a temperature-jump boundary condition derived from kinetic theory is utilized. The results
from this model agree with those from MD in terms of the total lifetime, droplet radius, and temperature,
while the classical d2 law underpredicts the lifetime of the droplet by a factor of 2. Theories beyond
NSF are also employed in order to investigate vapor rarefaction effects within the Knudsen layer adjacent
to the interface.
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A sound knowledge of the evaporation of nanodroplets is
of great importance to many applications, such as combus-
tion and spray drying [1], and the design of next-generation
evaporative cooling nanodevices [2]. Understanding the
mechanisms underlying the evaporation in nanodevices
requires observation at spatial and temporal resolutions that
challenge current experimental techniques. While computa-
tional atomistic descriptions, such as molecular dynamics
(MD) simulations, are capable of modeling evaporation at
nanoscales, it is unrealistic to use them to study multiscale
problems—processes spanning a wide range of time and
length scales—because of memory and computational time
limitations. This motivates the consideration of continuum
models that go beyond the classical Navier-Stokes-Fourier
(NSF) description.
From a fundamental viewpoint, as well as for bench-

marking, the process of evaporation of a spherical droplet is
important. The continuum description, offered by the NSF
equations, agrees with a molecular description when the
droplet radius (a ¼ d=2) is much larger than the mean free
path (λ) in the vapor [1,3,4], i.e., for sufficiently small
Knudsen number (Kn ¼ λ=a).
For an isothermal drop below the critical temperature,

the NSF equations without temperature-jump boundary
conditions predict the time rate of change of the square of
the droplet radius (or diameter) to be constant, also known
as the d-squared (d2) law of evaporation [5]. Interestingly, it

has been observed in MD simulations [3,6,7] that when the
Knudsen number Kn ¼ λ=a≳ 1, the droplet radius evolves
linearly in time. Notably, as will be shown in this Letter, the
transition from d2 to d law cannot be explained through the
NSF equations with classical boundary conditions, i.e.,
with the Hertz-Knudsen-Schrage (HKS) relation [8] and an
assumption that the temperature is continuous across the
liquid-vapor interface.
In the literature, the transition from the d2 to a d law is

usually discussed in the MD framework [3,7] and explained
theoretically by introducing ad hoc corrections due to
rarefaction effects, offering very little insight into the
macroscopic processes that dictate this changeover.
Rarefaction manifests itself through a temperature jump

and kinetic boundary (Knudsen) layer, which have been
observed experimentally [9–11] and predicted theoretically
[12,13]. Notably, even at Kn ≈ 10−3—where the d-squared
scaling is still seen—the NSF equations with classical
boundary conditions are unable to give a good quantitative
prediction of the total evaporation time of micrometer size
droplets [9].
In this Letter, we show that the crossover from the d2 to a

d law is caused by a prominent temperature jump at the
liquid-vapor interface. Using MD as a benchmark, we show
that for nanosized droplets the NSF equations along with
the temperature-jump boundary conditions, give good
predictions for the evaporation process when the initial
Knudsen number is below ≲0.5. In specific limits, analytic
progress allows us to predict the transition from the d2 to d
law, with an explicit expression given between droplet
radius and time.
Typically, there is a difference in velocity distribution

function between molecules ejected from the condensed
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phase and those coming from the vapor, which causes a
strong nonequilibrium in a thin layer adjacent to the
interface, the Knudsen layer. The result is an actual jump
in temperature at the liquid-vapor interface alongside a
variation in temperature across the Knudsen layer, pre-
dicted accurately by the linearized Boltzmann equation
(LBE) [14]. As the NSF equations cannot capture the
Knudsen layer, the temperature jump boundary conditions
include both the actual and apparent contributions to the
jump [15,16]. In contrast, the regularized 26 moment (R26)
equations [13] are able to approximate the Knudsen layer
(and hence the temperature profile near the interface) so
that the boundary condition does not include the apparent
component.
Modeling the liquid drop.—Consider a spherical incom-

pressible liquid droplet immersed in its own vapor. The
droplet and the vapor flow surrounding the droplet retain
spherical symmetry during the lifetime of the droplet, so
that all the equations are in a spherical coordinate system
with r being the radial distance from the center of the
droplet. Let aðtÞ be the radius of the droplet at time t, and
the temperature and pressure of the vapor at a distance far
from the droplet be T∞ and p∞, respectively. Throughout
this Letter, properties relating to the liquid have the sub-
script l, and those relating to the vapor have the subscript v.
Owing to the conservation of mass, the velocity inside the
droplet is zero, i.e., the radial velocity ul ¼ 0. The temper-
ature Tlðt; rÞ inside the droplet is given by the energy
balance equation

ρlcl
∂Tl

∂t þ 1

r2
∂ðr2qlÞ
∂r ¼ 0; ð1Þ

where ρl and cl are the density and specific heat of the
liquid, respectively. The heat flux ql in the liquid is given
by Fourier’s law, i.e., ql ¼ −κl∂Tl=∂r, where κl is the
thermal conductivity.
Modeling the surrounding vapor.—We consider a mono-

atomic ideal gas, assume the interface separating the liquid
and vapor is infinitely thin, and the gradients in field variables
(such as temperature) across the interface are modeled by
setting the jump boundary conditions at the interface, see, for
example, Refs. [8,13,16,17]. We study slow evaporation,
which means small changes in the pressure and temperature
from their equilibrium state p∞ and Teq, where Teq is the
saturation temperature at pressure p∞. Accordingly, only
terms that are linear in deviations from the reference equi-
librium state (p∞, Teq) are considered.
The process in the vapor can be further simplified due to

the high density ratio of the liquid phase to vapor phase.
This ensures that the timescales for heat and mass diffusion
within the vapor are very small compared to the liquid
phase, which creates a quasisteady process in the vapor.
The linearized conservation laws for mass and energy in the
vapor are then

∂ðr2uvÞ
∂r ¼ 0 and

∂ðr2qvÞ
∂r ¼ 0: ð2Þ

At the interface (r ¼ a), mass and energy conservation give

j ¼ −ρl
da
dt

¼ ρv

�
uv −

da
dt

�
; ql ¼ qv þ jH0; ð3Þ

respectively, where H0 is the specific heat of evaporation
and j is the mass flux through interface.
In equilibrium, both the mass flux j and the heat flux qv

are zero, and the chemical potential and temperature are
continuous across the liquid-vapor interface. These con-
ditions lead to the Clausius-Clapeyron-Kelvin relation:
psat ¼ pp

sat exp ½2γ=ðaρlRTlÞ�. Here, γ is the surface tension
coefficient and pp

sat ¼ p∞½1 −H0ð1 − Tl=TeqÞ=RTeq� is the
saturation pressure for a planar surface with R being the
specific gas constant.
In what follows, we consider the NSF equations with

(i) classical boundary conditions and (ii) temperature-jump
boundary conditions. Theories beyond NSF, in particular,
the R26 equations [13], and the linearized Boltzmann
equation (LBE) [14] are employed to investigate
Knudsen layer effects and the results are compared with
the MD simulations.
Model 1: NSF without jump.—When assuming equality

of liquid and vapor temperatures at the interface, the HKS
relation can be applied alongside NSF constitutive relations
to give

j ¼ ϑ

2 − ϑ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πRTeq

s
Δp and qv ¼

κv
a
ΔT; ð4Þ

where ϑ is the condensation-evaporation coefficient, ΔT ¼
Tl − T∞ and Δp ¼ psatðTlÞ − p∞.
Model 2: NSF with temperature-jump.—When including

temperature jumps, linear irreversible thermodynamics
[16,17] gives that

2
64

Δpffiffiffiffiffiffiffiffiffiffiffi
2πRTeq

p
p∞ffiffiffiffiffiffiffiffiffiffiffi
2πRTeq

p Tl−Tv
Teq

3
75
α

¼ rαβ

� j
qv

RTeq

�
β

; ð5Þ

where Tv ¼ T∞ þ ðqv=κvÞða2=rÞ is the temperature in
vapor. In Eq. (5), the elements of the Onsager resistivities
matrix rαβ are taken from Ref. [15] as r11 ¼ 1=ϑþ 1=π−
23=32, r12¼ r21¼1=16þ1=5π, and r22¼1=8þ13=25π.
These coefficients were obtained from kinetic theory by
assuming that the evaporation or condensation coefficient
does not depend on the impact energy and that all noncon-
densing vapor particles are being thermalized. Furthermore,
for all numerical computations, we assume ϑ¼1 (an
assumption supported by the MD simulations [18]).
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The results for ϑ ≠ 1, which are similar, are discussed in the
Supplemental Material [19].
Comparison between models and MD results.—

Equations (1) and (3) along with the boundary conditions
(4) or (5), are solved numerically to obtain Tl and a.
The results are presented in Figs. 1 and 2, with initial radius
a0 ¼ 12.58 nm, p∞ ≃ 0.4 MPa and T∞ ¼ 174 K, yielding
an initial Knudsen number Kn0 ¼ μv

ffiffiffiffiffiffiffiffiffiffi
RTeq

p
=p∞a0 ¼

0.245. The property values, such as H0, Teq, and ρl, are
all evaluated for a Lennard-Jones gas as in Ref. [21], in
order to compare the results with the MD results given in
Ref. [5]. The full list of flow parameters are given in the
Supplemental Material [19].
The MD simulation data (circle in Fig. 1) predict a short

initial growth of the droplet, due to condensation of the
surrounding hot vapor on the cold liquid drop. As shown by
Fig. SM7 in the Supplemental Material [19], relaxing the
assumption of quasistatic flow in the vapor and accounting
for the finite size of the domain, this growth can be captured
in our model. However, as this initial transient is essentially
an artifact of the initial MD configuration, we do not focus
on this behavior in the present work. From Fig. 1, the NSF
equations with classical boundary conditions (dashed black
line) predict a linear evolution for the radius squared, but
this macroscopic model does not give a good prediction
of the rate of evaporation (the slope of the curve) or the
evaporation time, about half of MD predictions. On the
other hand, the NSF equations with jump boundary con-
ditions (solid blue lines) give a good prediction for the rate
of evaporation and total lifetime of the droplet. Notably, in
the MD simulations a departure from the d2 law is observed

when the Knudsen number Kn ¼ μv
ffiffiffiffiffiffiffiffiffiffi
RTeq

p
=p∞a≳ 0.5.

This crossover is captured by the NSF equations with jump
and the LBE (see Supplemental Material [19] for simulation
details for LBE), matching well with theMD results. At three
different times t ¼ 20.92, 32.62, 40.98 ns theNSFwith jump,
predict a ¼ 10.18, 8.59, 7.35 nm, differing within 10%
compared to MD results [5] (a ¼ 10.82, 9.33, 8.17 nm).
TheLBEgives similarly good agreementwith theMDresults,
with predicted radii a ¼ 10.44, 9.07, 8.032 nm. To remove
any influence of the initial transient on our conclusions (as
confirmed byFig. SM8 in the SupplementalMaterial [19]), in
the inset of Fig. 1 the slope jda2=dtj vs a is compared for
macroscopic theories and MD simulation [22].
Revisiting d2 law for nanodroplets.—An explicit ana-

lytical relation between radius of the droplet and time can
be obtained from the NSF equations with no-jump boun-
dary conditions (4) after some simplifying assumptions.
The MD studies show that the evaporation process of the
droplet consists of essentially two stages [5,22]. During the
first stage, heat flows from the hot surrounding vapor to
the droplet, causing the droplet temperature to rise from
the initial temperature T0

l to T�
l (≃Teq, see Fig. SM2 in the

Supplemental Material [19]), and at the same time, the
radius increases due to the condensation of hot vapor at the
colder droplet surface. After this relatively negligible initial
growth, the MD simulations in Ref. [5] show an almost
isothermal behavior for the droplet. During this stage, heat
supplied by the hot vapor qv contributes only to the
evaporation, the mass flux is given by j ¼ −qv=H0.
Hence, for model 1, Eqs. (3) and (4) yield

a2

a20
− 1 ¼ 2κvðT�

l − T∞Þ
ρlH0a20

t ≃
2κvðTeq − T∞Þ

ρlH0a20
t: ð6Þ

FIG. 1. Radius squared of the evaporating droplet as a function
of time for an initial radius a0 ¼ 12.58 nm: NSF without
temperature jump (dashed black line): the NSF with temper-
ature-jump (solid blue line): the LBE (dot-dashed red line): MD
simulations from [5] (circle). Symbols × andþ correspond to
analytic expressions in Eqs. (6) and (7), respectively.

FIG. 2. Temperature T vs the inverse distance (x ¼ a=r). The
NSF equations with (red solid lines) and without (black dashed
lines) temperature jump at the interface. The circles are from MD
simulations [5] for t ¼ 20.92, 32.62, 40.98 ns.
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From this analytic result (denoted by × in Fig. 1), which
agrees well with numerical results, one can see clearly that
a2 evolves linearly in time. This is the well-known d2 law
of evaporation [4]. The total evaporation time tF given by
the d2 law (6) is tF ¼ ρlH0a20=2κvðT∞ − TeqÞ, which is
smaller than predicted by the MD simulations [5], as shown
in Fig. 1.
One can obtain an analytic solution analogous to Eq. (6)

by taking the temperature jump into account, if one neglects
the Kelvin’s correction, which does not play a significant
role on evaporation, see Fig. SM4 of the Supplemental
Material [19]. From the jump boundary conditions (5),
along with j ¼ −qv=H0, one can obtain a solution for qv, j,
and T�

l . Neglecting the Kelvin’s correction, these equations
become linear and yield qv ¼ −j=H0 ¼ κ�vðTeq − T∞Þ=a,
where κ�v ¼ κv=ð1þ α0KnÞ is the effective heat conduc-
tivity in the vapor. Substituting j in Eq. (3) and integrating,
we obtain

�
a2

a20
− 1

�
þ 2α0

λ

a0

�
a
a0

− 1

�
¼ 2κvðTeq − T∞Þ

ρlH0a20
t; ð7Þ

where the coefficient

α0 ¼
ffiffiffiffiffiffi
2π

p
cp

Rr11 Pr

�
r22r11 − r212 þ

ðr12H0 − r11RTeqÞ2
H2

0

�
: ð8Þ

The temperature jump δT ¼ Tv − T�
l reads

δT ¼ −Teq
qv
p∞

ffiffiffiffiffiffiffiffiffiffi
2π

RTeq

s �
r22 −

r12RTeq

H0

�
: ð9Þ

Utilizing Eq. (9), for a millimeter sized drop the temper-
ature jump is seen to be negligible (δT ≈ 5 × 10−4 K), for
micrometer sized drops it becomes moderate (δT ≈ 0.5 K),
while for a ten nanometer drop the jump is large
(δT ≈ 40 K). Clearly from Eq. (7), when the droplet radius
is significantly bigger than λ, the radius squared evolves
linearly with time. However, when the droplet radius is
much smaller than λ, a evolves linearly in time, a behavior
that cannot be described without the second term on the
left-hand side of Eq. (7), which comes from the jump
boundary condition.
In Fig. 1, the results from our numerical simulations are

compared to Eq. (7); there is a close agreement. The total
evaporation time tF obtained from Eq. (7) is given by

tF ¼ ρlH0a20ð1þ 2α0Kn0Þ
2κvðT∞ − TeqÞ

: ð10Þ

Clearly, tF depends on α0 and Kn0, and is larger than that
predicted by the classical d-squared law (6). Figure SM3 in
the Supplemental Material [19] presents tF as a function of
Kn0 for different values of the evaporation coefficient ϑ.

Again, a good agreement between numerical simulations
and Eq. (10) is observed. For 0.5 ≤ ϑ ≤ 1, values typically
obtained from MD simulations [18], α0 and hence tF
change within less than 10%.
Temperature profiles.—The temperature vs the inverse

distance (x ¼ a=r) is shown in Fig. 2 at t ¼ 20.92 and
32.63 ns. The interface is at x ¼ 1, with vapor on the left
and liquid on the right. The MD results from Ref. [5] are
denoted by circles when a ¼ 10.819 nm (at t ¼ 20.92 ns)
and 9.327 nm (at t ¼ 32.63 ns), respectively. It is difficult
to differentiate the temperature profiles in MD at these
times, because of thermal fluctuations, so the same symbols
are used to represent the temperature at all times. The
results of the NSF with classical boundary conditions are
depicted with black dashed lines. Note that this model
predicts a ¼ 8.257 and 4.057 nm with average liquid
temperature Tl ¼ 105.3 and 107.6 K, respectively.
Therefore, as well as substantial differences in drop radii,
the model also fails to capture the temperature profile, by
missing all MD data points in the vapor and overestimating
the temperature in the liquid. While results from the NSF
equations with jump boundary conditions (solid red lines)
are consistent with MD predictions for the liquid temper-
ature, the agreement between the NSF and MD for the
vapor temperature is not satisfactory, particularly close to
the interface.
Kinetic effects.—The NSF equations cannot produce

correct temperature profiles in the vapor because of (a) their
inability to capture the Knudsen layer and (b) the finite
thickness of the interface. However, the Knudsen layer
is significantly larger than the interfacial width, which is
about 8.6 Å [21], so the assumption of a sharp interface is
justified.
The LBE provides accurate solutions for the entire range

of Knudsen numbers. However, the coefficients tabulated
in Ref. [14] do not provide any information about the
flow fields. To recover this information we apply the R26
equations, which provide a significant improvement over
the NSF equations, accurately approximating LBE results
up to Kn≲ 1 [13] (See Fig. SM1 in Supplemental Material
[19] for a comparison of the models). The analytic
expressions for the R26 equations derived in Ref. [13]
allow one to decompose the temperature profiles in the
vapor into a classical Fourier contribution (dashed lines in
Fig. 3) for t ¼ 20.92 ns, plus a contribution from the
Knudsen layer. Notably, the R26 theory provides a better
qualitative and quantitative agreement with the MD data
compared to the NSF results.
Finally, we consider a case where kinetic effects domi-

nate from the outset, with Kn0 ¼ 1.33, as studied by
Refs. [3,7] using MD simulations. In Fig. 4, we plot
(a=a0) vs time with initial droplet radius a0 ¼ 2.3 nm
and initial liquid temperature T0

l ¼ 93 K. The far-field
temperature T∞ and pressure p∞ are 500 K and 0.4 MPa,
respectively. Indeed, the NSF with jump (solid line) and the
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LBE (dot-dashed lines) confirm the expected linear decay
of the radius with time, which is also seen in the MD results
(circles), until t ¼ 1.2 nm, at which point the droplet radius
becomes comparable to the interfacial width [21] as well as
the cutoff radius (2.5σLJ) used in the MD simulations.
The main advantage of continuum based models is that

they can readily be incorporated in mutiscale multiphysics
softwares used for engineering design optimization. In
summary, it has been shown that to predict scaling
transitions occurring when a ≈ λ the NSF must be

supplemented with a temperature jump boundary condi-
tion, but to capture finer flow characteristics one must go
beyond NSF. Motivated by these findings, future work
could be to study mixtures, where concentration jumps will
play a vital role, and to consider processes close to the
critical point, where the Enskog-Vlasov formulation [23]
allows one to capture nonideal effects in the vapor and
gives a unified description of liquid and vapor.
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