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A new type of dynamics called laminar chaos was recently discovered through a theoretical analysis of a
scalar delay differential equation with time-varying delay. Laminar chaos is a low-dimensional dynamics
characterized by laminar phases of nearly constant intensity with periodic durations and a chaotic variation
of the intensity from one laminar phase to the next laminar phase. This is in stark contrast to the typically
observed higher-dimensional turbulent chaos, which is characterized by strong fluctuations. In this Letter
we provide the first experimental observation of laminar chaos by studying an optoelectronic feedback loop
with time-varying delay. The noise inherent in the experiment requires the development of a nonlinear
Langevin equation with variable delay. The results show that laminar chaos can be observed in higher-order
systems, and that the phenomenon is robust to noise and a digital implementation of the variable time delay.
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Time delays, typically due to the finite propagation speed
of signals, can be found in models of lasers [1–3], control
systems [4,5], population dynamics [6], immune diseases
[7], and networks of neurons [8,9]. Systems with time delays
are known to display a wide variety of interesting dynamical
behaviors, including square waves [10] and multistability
[11,12], and have even been shown to exhibit spatiotemporal-
like behaviors such as phase transitions [13], coarsening [14],
and chimera states in ring networks [15] and arbitrary
networks [16,17] when viewed in the space-time representa-
tion [18]. Time delay systems have long been known for their
ability to display high-dimensional chaotic behavior [19].
Recent developments in the field of time-delay systems can be
found in the theme issue [20].
Most previous studies of time-delay systems have

considered systems with a fixed time delay. Less under-
stood is the case in which the duration of the delay itself is
allowed to vary in time. This possibly more realistic case
can lead to an increase in dynamical complexity [21,22], or
alternatively a stabilization of the system [23,24]. Only
a few experiments (notable ones include the electronic
circuits described in Refs. [25,26]) have been performed
with tunable time-varying delays. Here, we develop the first
optoelectronic oscillator with time-varying delay.
In 2018 an entirely new type of chaos, laminar chaos,

was discovered in a scalar time-delay system with a varying
delay [27]. In this Letter, we report an optoelectronic
oscillator that displays laminar chaos, the first observation
of laminar chaos in an experiment. Our results demonstrate
that laminar chaos can be observed in higher-order systems
with a digital implementation of the variable delay. Further,
we study the robustness of laminar chaos to noise, both in

the experiment and in a nonlinear Langevin equation with
variable delay.
In Ref. [27] laminar chaos was found in systems

described by a scalar delay differential equation with
time-varying delay τðtÞ

1

T
_zðtÞ þ zðtÞ ¼ μF(z½t − τðtÞ�): ð1Þ

Equation (1) describes a first-order (one-pole) low-pass
filter with nonlinear time-delayed feedback in which the
duration of the delay varies in time. In Eq. (1), z is a generic
dependent variable, FðzÞ is a generic nonlinearity, T=2π is
the cutoff frequency of the low-pass filter, and τðtÞ is the
time-varying time delay. In Eq. (1), time is dimensionless.
Equation (1) contains the essential ingredients for laminar
chaos: a feedback loop with a band-limiting element (low-
pass filter), a nonlinearity FðzÞ, and a time-varying time
delay τðtÞ. A block diagram depicting such a system is
given in Fig. S1 (Supplemental Material [28]).
Laminar chaos is characterized by nearly constant

laminar phases with periodic durations and burstlike
transitions between them. The intensity levels zn of the
laminar phases vary chaotically and are connected by the
one-dimensional map znþ1 ¼ μFðznÞ. The durations of
the phases are determined by the so-called access map
tnþ1 ¼ RðtnÞ≡ tn − τðtnÞ [27]. In other words, a system
that is well described by a continuous-time delay differ-
ential equation displays essentially discrete-time dynamics
described by a chaotic map.
In order to study laminar chaos in an experiment, we use

an optoelectronic oscillator. An optoelectronic oscillator is
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an attractive system for the study of laminar chaos because
it is a well-understood system whose oscillations arise from
nonlinearity and time-delayed feedback. Optoelectronic
oscillators with fixed time delays have been used for a
variety of applications, including the generation of micro-
waves with low phase noise [29,30], neuromorphic com-
puting [31,32], sensing [33], and chaotic communications
[34]. Optoelectronic oscillators are known to display a wide
variety of dynamics [35–37], including periodic dynamics
[29], breathers [38] and broadband chaos [39].
An illustration of our optoelectronic oscillator is shown in

Fig. 1. A fiber-coupled laser diode emits light at a constant
intensity. The light intensity is modulated by an integrated
Mach-Zehnder intensity modulator such that the normalized
intensity transmitted through the modulator is given by
IðzÞ ¼ sin2½zðtÞ þ ϕ� where zðtÞ is the normalized voltage
applied to the rf port of the modulator and ϕ is the modulator
bias. The modulator provides the nonlinearity in our feed-
back loop; i.e., in our system FðzÞ ¼ sin2½zðtÞ þ ϕ�. The
output of the modulator is converted into an electrical signal
by a dc-coupled photoreceiver. This electrical signal is read
into a field-programmable gate array (FPGA) via an analog-
to-digital converter (ADC). The time-varying delay is
implemented via a tapped shift register and multiplexer
(MUX) on the FPGA. The output of the variable delay is
digitally filtered by a second-order (two-pole Butterworth)
low-pass filter with cutoff frequency fcut ¼ 3183 Hz. The
filtered signal is output via a digital-to-analog converter
(DAC). This electrical signal is amplified and applied to the
rf port of the modulator, completing the feedback loop.
The round-trip gain of the feedback loop is quantified by
the parameter μ. We measure μ directly by breaking the
feedback loop at the input to the modulator and measuring
the steady-state value of z.
While the FPGA gives us great flexibility in the choice

of the form of the delay τðtÞ, we choose the time-varying
delay as

τðtÞ ¼ τ0 þ
A
2π

sinð2πt=T̃Þ; ð2Þ

where τ0, A, and T̃ are the mean, amplitude, and period of
the delay, respectively. The FPGA is clocked at a frequency
νs and thus operates in discrete time. We choose νs ¼
100 kHz and the delay period T̃ ¼ 10 ms, so that one
period of the delay is divided into 1000 time steps. Thus,
Eq. (2) is an accurate approximation of the piecewise-
continuous variation of the delay in the experiment. Table
S1 in the Supplemental Material [28] provides a list of the
parameter values that describe our optoelectronic oscillator
as well as the corresponding parameters in dimensionless
time such that the period of the delay T̃ ¼ 1, which are used
for numerical simulations.
There are two fundamentally different classes of time-

varying delays [40,41]. Systems with conservative delays
are equivalent to systems with a constant delay; on the other
hand, systems with dissipative delays [that is, the access
map tnþ1 ¼ RðtnÞ is dissipative] are not. Only systems with
dissipative delays are candidates to display laminar chaos
[27]. We consider two different values of the parameter τ0
so that we can explore our optoelectronic oscillator with a
dissipative delay (τ0 ¼ 15.0 ms) and with a conservative
delay (τ0 ¼ 15.4 ms). In Ref. [27] it was shown that a
necessary condition for laminar chaos is given by λ½F� > 0
and

λ½F� þ λ½R� < 0; ð3Þ

where λ½F� and λ½R� are the Lyapunov exponents of the
map znþ1 ¼ μFðznÞ and the access map tnþ1 ¼ RðtnÞ,
respectively. For our system, λ½R� ≈ −0.83 when τ0 ¼
15.0 ms (and λ½R� ¼ 0 when τ0 ¼ 15.4 ms). We choose
μ ¼ 2.2 and ϕ ¼ π=4 so that λ½F� ≈ 0.31 and Eq. (3) is
satisfied when τ0 ¼ 15.0 ms.
Noise plays an important role in any experimental

system. In our optoelectronic setup, inherent sources of
noise include discretization noise in the ADC and DAC,
electronic noise in the DAC amplifier, and Johnson noise
in the photoreceiver. In order to experimentally test the
robustness of laminar chaos to different amounts of noise,
we use the FPGA to add noise to the experiment in a
controlled way. Specifically, at each time step we add
numerically generated Gaussian white noise with zero
mean and standard deviation ζ to the normalized intensity
I measured by the ADC.
Figure 2 shows measured experimental time series.

When τ0 ¼ 15.0 ms, the delay is dissipative and laminar
chaos is observed, as shown in Figs. 2(a)–2(c) for different
values of added noise strength ζ. The nearly constant
laminar phases are clear in Figs. 2(a)–2(b), but are more
difficult to observe by inspection in Fig. 2(c). In contrast,
when we set τ0 ¼ 15.4 ms, the delay becomes conservative
and we observe only turbulent chaos [Figs. 2(d) and 2(e)].
Our optoelectronic oscillator possesses the three main

attributes—a nonlinearity, a band-limiting element, and a
time-varying delay—that are modeled by Eq. (1) and are

FIG. 1. An illustration of the optoelectronic oscillator we used
to observe laminar chaos. Red lines indicate the optical path,
black lines indicate the electronic path, and green lines indicate
signal processing on the FPGA.
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necessary for laminar chaos [27]. However, there are three
significant differences between the present experimental
realization and the theoretical investigation in Ref. [27].
First, we used a two-pole Butterworth filter, which means
that our optoelectronic oscillator is a second-order system.
Second, the ADC and DAC induce digitization (“sam-
pling”) and quantization (“round-off”) noise into the
experiment, which may have significant effects on the
dynamics of hybrid systems with delayed feedback
([42,43], and references therein). The effect of a digital
implementation on the access map dynamics is not clear,
but the experimental results show that laminar chaos can
still be observed. Third, noise is present in the experi-
ments, which can make it difficult to identify laminar
phases for increasing noise strength. In the following, we
study the robustness of laminar chaos to noise and show
that the noisy trajectories (a)–(c) exhibit features that
clearly distinguish laminar chaos from other dynamics.
All together, our results show that laminar chaos is robust
to the details of the experimental implementation and
therefore should be possible in a variety of natural and
engineered systems.
In order to take into account the presence of noise in the

general model of laminar chaos [Eq. (1)], we consider the
following delayed Langevin equation:

1

T
_zðtÞ þ zðtÞ ¼ μF(z½t − τðtÞ�)þ σffiffiffiffi

T
p ξðtÞ; ð4Þ

where ξðtÞ is Gaussian white noise with hξðtÞi ¼ 0
and hξðtÞξðt0Þi ¼ δðt − t0Þ.
Exemplary trajectories of Eq. (4) for dimensionless

parameters as in Table S1 are shown in Fig. 3. The
trajectories in Figs. 3(a)–3(c) were computed with
τ0 ¼ 1.50, while those in Figs. 3(d)–3(e) were computed
with τ0 ¼ 1.54. In all cases, the trajectories give qualitative
agreement with the corresponding experimental time series
in Fig. 2.
Two identifying features of laminar chaos are the

periodicity of the duration of the laminar phases, which
is equal to the delay period [27], and the description of the
intensity levels of the laminar phases by a one-dimensional
chaotic map znþ1 ¼ μFðznÞ. We now show that these
features can be used to identify laminar chaos in the time
series from our optoelectronic experiment and from sim-
ulations of Eq. (4). The laminar phases can be validated by
considering the derivative of z. Without noise (σ ¼ 0), the
derivative is roughly zero between the bursts; i.e., it is
characterized by phases with approximately zero ampli-
tude, which are periodically interrupted by short large
amplitude bursts. In the presence of noise we consider
the approximate derivative Δh½z�ðtÞ ¼ ½zðtþ hÞ − zðtÞ�=h
instead of the derivative, since the latter is not well defined.
In this case the approximate derivative is characterized by
phases of small amplitude which are periodically inter-
rupted by short large amplitude bursts. For increasing noise
strength σ, one expects that the fluctuation strength in the
low amplitude phases increases, such that the periodic

FIG. 2. Experimental time series for different values of the
mean delay τ0 and for different values of the strength ζ of the
external noise. The trajectories (a)–(c) correspond to a dissipative
delay (τ0 ¼ 15.0 ms) and show laminar chaos, whereas the
trajectories (d) and (e) correspond to a conservative delay
(τ0 ¼ 15.4 ms) and show turbulent chaos.

FIG. 3. Trajectories generated from Eq. (4) with parameters
from Table S1 for different mean delays τ0 and noise strengths σ.
The trajectories (a)–(c) correspond to a dissipative delay (τ0 ¼
1.50) and show laminar chaos, whereas the trajectories (d) and
(e) correspond to a conservative delay (τ0 ¼ 1.54) and show
turbulent chaos.
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structure is still present but gets blurred. To determine
the position of the laminar phases of a laminar chaotic
trajectory zðtÞ, we consider the temporal distribution of the
variance σ2d½z�ðtÞ of the approximate derivative Δh½z�ðtÞ,
which is defined by

σ2d½z�ðtÞ¼ lim
N→∞

1

N

XN−1

n¼0

fΔh½z�ðtþnT̃Þg2−fμd½z�ðtÞg2; ð5Þ

where

μd½z�ðtÞ ¼ lim
N→∞

1

N

XN−1

n¼0

Δh½z�ðtþ nT̃Þ: ð6Þ

If the delay period T̃ is unknown, it can be determined by
analyzing the power spectrum of Δh½z�, in which there are
large peaks at integer multiples of 1=T̃.
Figure 4 shows the variance σ2d of exemplary laminar

chaos trajectories generated with different noise strengths σ
and ζ via Eq. (4) (a) and via the experimental setup (b). The
periodic alternation of high and low values of σ2d corre-
sponds to high (bursts) and low frequency (laminar) phases
of the laminar chaotic trajectory. The local minima of σ2d
can be used to determine the position of the laminar phases
and the number of laminar phases per period, i.e., the
denominator q of the rotation number of the access map.
Next, we check the connection of the intensity levels of

nearby laminar phases, i.e., the connection between the
values of the trajectory at the local minima of σ2d. To do this,

we plot the intensity znþp0 of the ðnþ p0Þth laminar phase
against the intensity zn of the nth laminar phase, where
p0 ∈ N and p0 > 0. We define p as the numerator of the
rotation number ρ ¼ −p=q of the access map R. For
laminar chaos, when p0 ¼ p, the points ðzn; znþpÞ resemble

the graph (z; μFðzÞ). If the access map is not known, one

finds the correct p0 ¼ p from the smallest number for
which the points ðzn; znþp0 Þ resemble a line, which means
that both the nonlinearity μFðzÞ and the rotation number
ρ ¼ −p=q of the access map can be reconstructed from
laminar chaotic trajectories. If no such p0 can be found, the
trajectory cannot be characterized as laminar chaos.
We observed exactly this behavior in numerical simu-

lations of Eq. (4) and experimental measurements.
Figure 5 shows the accurately reconstructed nonlinearity
for p0 ¼ p ¼ 3. This type of time-series analysis can
distinguish laminar chaos from both turbulent chaos and
from the periodic square wave solutions described in
Refs. [37] and [44]. For the turbulent chaos in Figs. 2(d),
2(e) and 3(d), 3(e), the graph (not shown) of ðzn; znþp0 Þ
does not resemble a line for any p0; instead the entire space
zn ∈ ½0; μ�, znþp0 ∈ ½0; μ� is filled. In contrast, for a periodic
square wave a similar plot would result in only two (or
period doubled) points along the sin2 curve, rather than the
full curve as in Fig. 5. Since we observe both the predicted
periodicity of the temporal duration of the laminar phases
and the relation of the amplitudes by the nonlinearity μF,

FIG. 4. Detection of the laminar phases. Temporal distribution
of the variance σ2d (in units of T=h) of the approximate derivatives
(h ≈ 0.0033) of (a) laminar chaotic trajectories of Eq. (4) and
(b) experimental trajectories (the same parameters as in Figs. 2
and 3). The laminar phases (low σ2d) and the burstlike transitions
between them (high σ2d) are located around the attractive and
repulsive fixed points of the reduced access map [dashed and
solid lines in (a)], respectively. In the experimental data the
location of the attractive fixed point is not known, and approxi-
mated via the local minima of σ2d [dashed lines in (b)].
The rotation number ρ of the access map is ρ ¼ −3=2 leading
to q ¼ 2 laminar phases per period.

(a)

(b)

F

F
^^

FIG. 5. Connection between the laminar phases for the laminar
chaotic trajectories from (a) Fig. 3 (simulation) and (b) Fig. 2
(experiment). The intensity znþp0 of the ðnþ p0Þth laminar phase
is plotted vs the intensity zn of the nth phase for p0 ¼ p ¼ 3. The
reconstruction of the nonlinearity (z; μFðzÞ) (solid line) is
possible even for high noise strengths. For the experimental data
the black line represents the fit of the data for ζ ¼ 0 to the
nonlinearity μ̂ F̂ðzÞ ¼ μ̂ sin2ðzþ ϕ̂0Þ þ ĉ0, where μ̂ ≈ 2.229�
0.002, ϕ̂0 ≈ 0.8074� 0.0004, and ĉ0 ≈ −0.103� 0.002, where
the ·̂ is used to emphasize that the these parameter values are fits
to the data shown in Fig. 5(b), not directly measured. The
clipping below z ¼ 0 is due to the fact that the light intensity
cannot be lower than zero.
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we can conclusively state that we have observed laminar
chaos in our optoelectronic oscillator.
We have provided the first experimental demonstration

of laminar chaos and confirmed its robustness to noise both
experimentally and numerically. Our experiments show
that a fundamentally new type of dynamical behavior exists
in the real world, despite the highly sensitive nature of the
access map dynamics and in the presence of noise,
imperfections, and the hybridization of analog and digital
components. This experimental observation stimulated the
development of time-series analysis techniques to show
conclusively that we have observed laminar chaos and to
distinguish it from other dynamical behaviors, such as
turbulent chaos and period-doubled square waves. Our
work will motivate theoretical and experimental research to
explore the world of phenomena opened up by the presence
of time-varying delays. For example, the complex tran-
sition from laminar chaos to turbulent chaos via the
sequence of generalized laminar chaos of increasing order
[45] is not yet explored at all in experiments, and only
partially in theoretical studies. Further, our experiments
make clear the practical relevance of laminar chaos, and
open up potential applications of its inherent time multi-
plexing for communications and computing.
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