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The NOvVA experiment has seen a 4.4¢ signal of 7, appearance in a 2 GeV 7, beam at a distance of
810 km. Using 12.33 x 10?° protons on target delivered to the Fermilab NuMI neutrino beamline, the
experiment recorded 27 ¥, — o, candidates with a background of 10.3 and 102 7, — 7, candidates. This

H"
+0.11

new antineutrino data are combined with neutrino data to measure the parameters |Am3,| = 2.4870 ¢ x
1073 eV?/c* and sin? @3 in the ranges from (0.53-0.60) and (0.45-0.48) in the normal neutrino mass
hierarchy. The data exclude most values near §-p = 7/2 for the inverted mass hierarchy by more than 3¢
and favor the normal neutrino mass hierarchy by 1.9¢ and 6,5 values in the upper octant by 1.66.

DOI: 10.1103/PhysRevLett.123.151803

The observations of neutrino oscillations by many
experiments [1-9] are well described by the mixing of
three neutrino mass eigenstates vy, v,, and vz with the
flavor eigenstates v,, v,, and v;. The mixing is parametrized
by a unitary matrix which depends on three angles and a
phase, dcp, that may break charge-parity (CP) symmetry.
The oscillation frequencies are proportional to the neutrino
mass  splittings, Am3, =m3 —m3 ~7.5x 107 eV?/c*
and |Am3,|~2.5%x 1073 eV?/c*, and the angles are
known to be large: 6, ~34°, 63 ~8° 0,3 ~45° [10];
dcp, however, is largely unknown.

Within this framework, several questions remain unan-
swered. The angle 0,5 produces nearly maximal mixing but

Published by the American Physical Society under the terms of
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has large uncertainties. If maximal, it would introduce an
unexplained p — r symmetry; should it differ from 45°, its
octant would determine whether v, or v, couples more
strongly to v3. Furthermore, while it is known that the two
independent mass splittings differ by a factor of 30, the sign
of the larger splitting is unknown. The v and v, states that
contribute most to the v, state could be lighter [“normal
hierarchy” (NH)] or heavier [“inverted hierarchy” (IH)]
than the v5 state. This question has important implications
for models of neutrino mass [11-15] and for the study of
the Dirac vs Majorana nature of the neutrino [16,17].
Additionally, neutrino mixing may be a source of CP
violation if sindcp is nonzero.

These questions can be addressed by the measurement of
Vy = Uy, Uy = Uy, vy > U, and 1, — U, oscillations in
matter over baselines L of order (100-1000) km, with
neutrino  energies  E[GeV] =~ L[km| x |Am%,[eV?/c]|.
Several long-baseline experiments have reported observa-
tions of v, = v, [18-21], v, —» v, [19-21], and 1, — D,
[19,20], but a statistically significant observation of
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U, = U, has not previously been made. This report com-
bines the first antineutrino measurements by NOvA with
the neutrino data reported in Ref. [21] in a reoptimized
analysis yielding a new determination of the oscillation
parameters |Am3,|, sin® 63, Scp, and the neutrino mass
hierarchy.

The NOVA experiment measures oscillations by com-
paring the energy spectra of neutrino interactions in two
detectors placed in the Fermilab NuMI beam [22] at
distances of 1 km [near detector (ND)] and 810 km [far
detector (FD)] from the production target. The 14 kton FD
and 290 ton ND are sampling calorimeters constructed
from PVC and liquid scintillator [23,24]. The ND is located
100 m underground. The FD operates on the surface with
modest shielding resulting in 130 kHz of cosmic-ray
activity. The detectors are located 14.6 mrad off the beam
axis where the neutrino energy spectrum peaks at 2 GeV.
Magnetic focusing horns in the beamline charge-select
neutrino parents giving 96% (83%) pure v, (7,) event
samples between 1 and 5 GeV. Most contamination is
“wrong sign” (v in the v beam, or vice versa) with
<1%v,+0,.

This Letter reports data from an antineutrino run span-
ning from June 29, 2016, to February 26, 2019, with an
exposure of 12.33 x 10%° protons on target (POT) delivered
during 317.0 s of beam-on time, combined with the
previously reported [21] neutrino beam exposure of
8.85 x 10%° POT and 438.2 s. During these periods, the
proton source achieved a peak hourly averaged power
of 742 kW.

The flux of neutrinos delivered to the detectors is
calculated using a simulation of the production and trans-
port of particles through the beamline components [22,25]
reweighted to incorporate external measurements [26—45].
Neutrino interactions in the detector are simulated using
GENIE [46] tuned to improve agreement with external
measurements and ND data, reducing uncertainties in the
extrapolation of measurements in the ND to the FD. As in
Ref. [21], we set M4 in the quasielastic dipole form factor
to 1.04 GeV/c? [47] and use corrections to the charged-
current (CC) quasielastic cross section derived from the
random phase approximation [48,49]. In this analysis, we
also apply this effect to baryon resonances as a placeholder
for the unknown nuclear effect that suppresses rates at a low
four-momentum transfer in our and other measurements
[50-53]. Additionally, we increase the rate of deep-inelastic
scattering with hadronic mass W > 1.7 GeV/c? by 10% to
match our observed counts of short track-length v, CC
events. We model multinucleon ejection interactions
following Ref. [54] and adjust the rates in bins of energy
transfer, g, and three-momentum transfer, |g|, for v,and p,
separately to maximize agreement in the ND. The calcu-
lation of the v, and 7, rates uses these same models.

The energy depositions of final-state particles are simu-
lated with GEANT4 [25] and input to a custom simulation of

the detector response [55]. The absolute energy scale of the
detectors is calibrated to within +5% using the minimum
ionizing portion of cosmic-ray muon tracks that stop in the
detectors.

Cells with activity above threshold (hits) are grouped
based on their proximity in space and time to produce
candidate neutrino events. Events are assigned a vertex, and
clusters are formed from hits likely to be associated with
particles produced there [56]. These clusters are catego-
rized as electromagnetic or hadronic in origin using a
convolutional neural network (CNN) [57]. Hits forming
tracks are identified as muons by combining information on
the track length, dE/dx, vertex activity, and scattering into
a single particle identification (PID) score [58]. The same
reconstruction algorithms are applied to events from data
and simulation in both detectors.

The v, and U, candidates are required to have a vertex
inside the fiducial volume and no evidence of particles
exiting the detector. Following Ref. [21], the v, and 7,
candidates are divided into a “core” sample which satisfies
these containment requirements, and a “peripheral” sample
which loosens these requirements for the most signal-like
event topologies. A second CNN [59] serves as the primary
PID, classifying events as v, CC, v, CC, v, CC, neutral
current (NC), or cosmic ray. The network is trained on
simulated neutrino and antineutrino beam conditions and
cosmic-ray data. It has an improved architecture and higher
rate of cosmic ray rejection over the previous network [21].
Events identified as v, CC are required to contain at least
one track classified as a muon.

Several requirements target cosmic-ray backgrounds.
For the v, CC sample, a boosted decision tree (BDT)
algorithm based on vertex position and muonlike track
properties is used. Events in the core v, sample not aligned
with the beam direction and that are near the top of the
detector are rejected. Events are removed whose topology
is consistent with detached bremsstrahlung showers from
cosmic tracks and with photons entering from the detector’s
north side where there is less shielding. Cosmic-ray back-
grounds in the v, peripheral sample are removed with a
BDT based on position and direction information.

The selection of v, and 7, CC events is 31.2% (33.9%)
efficient for true interactions in the fiducial volume,
resulting in 98.6% (98.8%) pure samples at the FD during
neutrino (antineutrino) beam operation. Both v, and 7, are
counted as a signal for the disappearance measurements.
Selections against exiting particle tracks are the largest
source of inefficiency. The efficiency for selecting signal v,
CC (v, CC) events is 62% (67%). Purities for the signal v,
(7,) samples fall in the range 57-78% (55—77%) depending
on the impact of oscillations on the signal and wrong-sign
background levels. These efficiencies and purities differ
from those quoted in Ref. [21] due to a reoptimization of
the selection algorithms [60]. The wrong-sign component
of the selected v, sample in the ND is calculated to be
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From left to right, the reconstructed neutrino energy spectra for the ND v, CC, ND v, CC, FD v, CC, FD v, CC [61] with

neutrino data shown across the top and antineutrino data across the bottom. For the ND v, CC spectra, backgrounds, aside from wrong-
sign candidates, are negligible and not shown. The v, CC spectra are split into a low and high purity sample, and the FD spectra shows
counts in the “peripheral” sample. The dashed lines in the ND v, spectra show the totals before data-driven corrections.

2.8 £ 0.3% and 10.6 £ 1.1% for the neutrino and antineu-
trino beams. These fractions are consistent with a data-
driven estimate based on the rate of v, CC and NC
interactions with associated detector activity indicative of
neutron capture.

The incident neutrino energy is reconstructed from the
measured energies of the final-state lepton and recoil
hadronic system. The lepton energy is estimated from
track length for muon candidates and from calorimetric
energy for electron candidates. The hadronic energy is
estimated from the sum of the calibrated hits not associated
with the primary lepton. The neutrino energy resolution at
the FD is 9.1% (8.1%) for v, CC (¢, CC) events and 10.7%
(8.8%) for v, CC (v, CC) events. We analyze the v, and 7,
events in quartiles of hadronic energy fraction as events
with less hadronic energy have the best energy resolution
and lowest backgrounds [21].

The energy spectra of the selected v, CC and v, CC
interactions in the ND during neutrino and antineutrino

TABLE 1.

beam operations are shown in Fig. 1. The selected ND v,
sample consists entirely of background sources for the v,
appearance measurement, predominantly the intrinsic beam
v, component, along with misidentified v, CC and NC
interactions. We analyze the v, candidate energy spectra in
two bins of v, PID (“low” and “high”) to isolate a highly
pure sample of v, — v, and 7, — 7, at the FD. In the ND,
the high-PID sample is dominated by intrinsic beam v,. A
third bin containing the “peripheral” events is added for
the FD.

The v, and v, signal spectra at the FD are predicted for
the neutrino and antineutrino beams separately using the
observed spectra of v, candidate events in the ND. The true
neutrino energy spectrum at the ND is estimated using the
measured event rates in bins of reconstructed energy and
the energy distributions of simulated events found to
populate those bins. This true spectrum is corrected for
differences in flux and acceptance between the ND and FD,
as well as differences in the v, and v, cross sections;

Systematic uncertainties on the total predicted numbers of signal and beam-related background events

at the best fit point (see Table IV) in the v, selected samples in the neutrino and antineutrino datasets.

v, signal v, bkg. U, signal v, bkg.

Source (%) (%) (%) (%)

Cross sections +4.7/-5.8 +3.6/-34 +32/-4.2 +3.0/-29
Detector model +3.7/-3.9 +1.3/-0.8 +0.6/-0.6 +3.7/-2.6
ND and FD differences +3.4/-34 +2.6/-2.9 +4.3/-43 +2.8/-2.8
Calibration +2.1/-32 +3.5/-3.9 +1.5/-1.7 +2.9/-0.5
Others +1.6/—1.6 +1.5/-1.5 +1.4/-12 +1.0/-1.0
Total +7.4/-8.5 +5.6/—6.2 +58/-64 +6.3/—4.9
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TABLE II. Systematic uncertainties on the oscillation param-
eters sin® 6,3, Am%z, and J.p, evaluated at the best fit point (see
Table IV).

Sin2 923 |Am§2| 5CP
Source (1073 (1075 eV?/c ()
Calibration +54/-92  +22/-26 +0.03/-0.03
Neutron model +6.0/—13.0 +0.5/—1.3 +0.01/-0.00
Cross sections +4.1/-77 +1.0/-1.1 +0.06/-0.07
E, scale 4+23/-30 +1.0/= 1.1  +0.00/=0.00
Detector model +1.9/—-3.2  +04/-05 +0.05/-0.05
Normalizations ~ +13/—2.7  +0.1/—02 +0.02/— 0.03
ND and +1.0/-4.0 +40.2/-0.2 +0.06/-0.07

FD diffs.

Beam flux +04/-0.8 +0.1/-0.1 +0.00/-0.00
Total systematic +9.7/—20  +2.6/—32 +0.11/-0.12

oscillations are applied to yield predictions for the true v,
and v, spectra at the FD. These spectra are then transformed
into reconstructed energy using the underlying energy
distributions from simulated neutrino interactions in
the FD.

The predicted background spectra at the FD are also
primarily data driven. Data collected out of time with the
NuMI beam provide a measurement of the rate of cosmic-
ray backgrounds in the v, and v, samples. Neutrino
backgrounds calculated to populate the FD v, spectra
are corrected based on the reconstructed v, candidates at
the ND. The procedure from Ref. [21] is followed to
determine corrections for each background component in
the neutrino-mode beam, while for the antineutrino-mode
beam a single scale factor is used. The remaining back-
grounds, which include any misidentified neutrino events

TABLE III. Event counts at the FD, both observed and
predicted at the best fit point (see Table IV).

Neutrino beam Antineutrino beam

v, CC v, CC y, CC v, CC
vy =Y, 112.5 0.7 24.0 0.1
b, =, 7.2 0.0 70.0 0.1
Uy = U, 0.1 443 0.0 2.2
b, =7, 0.0 0.6 0.0 16.6
Beam v, + 7, 0.0 7.0 0.0 5.3
NC 1.3 3.1 0.8 1.2
Cosmic 2.1 33 0.8 1.1
Others 0.7 0.4 0.6 0.3
Signal 119.74192 443%35 93978 16.6707
Background 4.2793 15.0598 22104 10.370¢
Best fit 123.9 59.3 96.2 26.8
Observed 113 58 102 27

in the v, samples and misidentified v, interactions in the v,
samples, make up less than 2% of the FD candidates and
are taken directly from simulation.

To evaluate the impact of systematic uncertainties we
recompute the extrapolation from the ND to the FD varying
the parameters used to model the neutrino fluxes, neutrino
cross sections, and detector response. The procedure
accounts for changes in the composition of the v, back-
ground, and for impacts on the transformation to and from
true and reconstructed energies due to variations in the
model parameters. We parametrize each systematic varia-
tion and compute its effect in each analysis bin. These
parameters are included in the oscillation fit, constrained
within their estimated uncertainties by penalty terms in the
likelihood function.

The oscillation parameters that best fit the FD data are
determined through minimization of a Poisson negative
log-likelihood, —2InL, varying three unconstrained
parameters, Am3,, sin® 6,3, and S¢p, as well as 53 con-
strained parameters covering the other oscillation param-
eters and the sources of systematic uncertainty summarized
in Tables I and II. The two-detector design and extrapo-
lation procedure significantly reduce the effect of the
~10-20% a priori uncertainties on the beam flux and
cross sections. The principal remaining uncertainties are
neutrino cross sections, the energy scale calibration, the
detector response to neutrons, and differences between the
ND and FD that cannot be corrected by extrapolation.

The selection criteria and techniques used in the analysis
were developed on simulated data prior to inspection of the
FD data distributions. Figure 1 shows the energy spectra of
the Yy CC, Uy CC, v, CC, and v, CC candidates recorded at
the FD overlaid on their oscillated best-fit expectations.
Table III summarizes the total event counts and estimated
compositions of the selected samples. We recorded 102 7,

TABLE IV. Summary of oscillation parameters. The top three
are inputs to this analysis [10], while the rest are the best fits for
different choices of the mass hierarchy (NH, IH) and 6,3 octant
(UO, LO), along with the significance (in units of o) at which
those combinations are disfavored. In addition to the region
indicated, for NH, LO a small range of sin®6,; 0.45-0.48 is
allowed at 1o [61].

Am3, /(1075 eV2/c*) 7.53 £0.18
sin® 0, 0.3070913
sin® 03 0.0210 £ 0.0011

NH, UO NH,LO IH, UO IH, LO
Am3, /(1073 eV2/c*) 42487000 41247 254 -2.53

sin? 0,3 0.56100%  0.48 056 047
Scp/m 0.0%37 1.9 1.5 1.4
- +1.66 +1.80 +2.00
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candidate events at the FD, reflecting a significant sup-
pression from the unoscillated expectation of 476. We find
27, — b, candidate events with an estimated background
of 10.3f8‘g, a 4.40 excess over the predicted background.
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FIG. 3. The lo, 20, and 3¢ contours in sin? #,3 vs §¢p in the
normal hierarchy (NH, top panel) and inverted hierarchy (IH,
bottom panel) [61]. The best-fit point is shown by a black marker.

This observation is the first evidence of ¥, appearance in a
v, beam over a long baseline. These new antineutrino data
are analyzed together with 113 v, and 58 v, — v, candi-
dates from the previous data set.

Table IV shows the overall best-fit parameters and the
best fits for each choice of 6,5 octant and hierarchy. The
best-fit point is found for the normal hierarchy with 6,5 in
the upper octant where —21n £ = 157.1 for 175 degrees of
freedom (goodness of fit p = 0.91 from simulated experi-
ments). The measured values of 0,3 and Am3, are con-
sistent with the previous NOvA measurement [21] that used
only neutrino data, and are consistent with maximal mixing
within 1.26.

Confidence intervals for the oscillation parameters are
determined using the unified approach [62,63]. Figure 2
compares the 90% confidence level contours in Am3, and
sin® @,; with those of other experiments [19,20,64,65].
Figure 3 shows the allowed regions in sin®@,; and &¢p.
These results exclude J-p values in the inverted mass
hierarchy from —0.04 to 0.97z in the lower 6,5 octant and
0.04 to 0.917z in the upper octant by more than 3¢. The data
prefer the normal hierarchy with a significance of 1.9¢
(p = 0.057, CL; = 0.091 [66]) and the upper 6,3 octant
with a significance of 1.60 (p = 0.11) [67].
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