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The anomaly cancellation equations for the U(1) gauge group can be written as a cubic equation in n − 1

integer variables, where n is the number of Weyl fermions carrying the U(1) charge. We solve this
Diophantine cubic equation by providing a parametrization of the charges in terms of n − 2 integers, and
prove that this is the most general solution.
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Gauge symmetries are essential to the remarkable
success of the standard model of particle physics in
describing all measured properties of the known elementary
particles. In order to be well behaved at high energies,
gauge theories must be free of gauge anomalies, including
the ones generated by fermion loops with three gauge
bosons on the external lines [1]. Furthermore, in a funda-
mental theory, the elementary fermions are expected to be
chiral; i.e., their charges should not allow a mass term
larger than the scale of spontaneous symmetry breaking.
This requires careful assignment of the fermion charges
under the gauge group.
U(1) gauge symmetries acting on chiral fermions are

present in many theories of interest for new physics, as well
as within the standard model which includes hypercharge.
The triangle anomaly with three U(1) gauge bosons on the
external lines, i.e., the ½Uð1Þ�3 anomaly, is canceled provided
a cubic equation with fermion charges as variables is
satisfied. The triangle anomaly with one U(1) gauge boson
and two gravitons on the external lines should also be
canceled [2]. This gives an additional anomaly equation,
which is linear in fermion charges. In the presence of
additional gauge groups, there are more equations that need
to be satisfied, but the cubic and linear ones are always
necessary.
Any U(1) gauge group must be embedded in a non-

Abelian structure in order to ensure that its gauge boson is
well behaved at high energies. As a result, it is generically
expected that the U(1) charges must be commensurate; i.e.,
they can be restricted to have integer values for certain
normalizations of the gauge coupling. Thus, the U(1)
anomaly cancellation conditions are equivalent to

Diophantine equations, i.e., equations with integer varia-
bles. Finding anomaly-free sets of fermions is challenging,
as there are no generic methods of solving Diophantine
cubic equations [3].
Any chiral set of fermions can be embedded in a larger set

of fermions that is chiral and anomaly-free [4]. However,
there is less known about how to identify anomaly-free sets
with a fixed number of fermions charged under a U(1) gauge
group. Numerical methods are useful, but become difficult to
use for a large number of fermions or for large ratios of
charges [5]. Methods based on algebraic geometry [6] are of
limited scope so far. Deriving anomaly-free sets from the
U(1) subgroups of a non-Abelian gauge group, such as
SO(10) or E6, is a powerful technique [7], yet it is restricted
by the choice of the larger group. Examples of chiral U(1)
models can be found in Ref. [8].
In this Letter we solve the cubic and linear anomaly

equations for the U(1) gauge group in the most general way.
Our main observation that leads to a general solution is that
an anomaly-free set of chiral charges can be constructed out
of two vectorlike sets. For a set of n chiral fermions we
identify a parametrization of the charges in terms of n − 2
integers, and then we prove that any solution of the
anomaly equations corresponds to certain values for these
integer parameters.
Anomaly-free chiral sets for the U(1) gauge group.—

Consider a number n of Weyl fermions carrying nonzero
charges z1;…; zn under a U(1) gauge group. Without loss
of generality the zi’s are taken as integers. There are two
anomaly equations: the ½Uð1Þ�3 anomaly cancellation
requires a Diophantine cubic equation,

z31 þ � � � þ z3n ¼ 0; ð1Þ
and the linear U(1) anomaly cancels when

z1 þ � � � þ zn ¼ 0: ð2Þ
If among the n Weyl fields there is a pair of vectorlike

fermions, i.e., their charges satisfy zi ¼ −zi0, then that pair
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does not contribute to the anomalies and the problem
reduces to n − 2 fermions. Thus, it is sufficient to consider
chiral sets of fermions, which means that the following
condition must be satisfied:

zi þ zi0 ≠ 0 for any 1 ≤ i; i0 ≤ n: ð3Þ

Anomaly-free chiral sets exist only for n ≥ 5 fermions [9].
For each solution to the anomaly equations (1) and (2), a

second solution can be obtained by flipping the sign of all
charges. Furthermore, since the equations are symmetric
under charge permutations, for any solution there are n! − 1
other solutions obtained by changing the ordering within
the set. To eliminate this plurality, we define the “canonical
form” for a set of charges as the ordering according to their
decreasing absolute values, making the first charge pos-
itive. Thus, the chiral set fz⃗g≡ fz1;…; zng, with zi ∈ Z
for 1 ≤ i ≤ n, is in the canonical form if it satisfies

z1 ≥ jz2j ≥ � � � ≥ jznj ≥ 1: ð4Þ

As Eqs. (1) and (2) are homogeneous, for any chiral set
that satisfies them there is an infinite set of solutions where
all the charges are multiplied by an arbitrary integer. It is
therefore sufficient to consider coprime sets of charges, i.e.,
sets where the greatest common divisor (gcd) of the n
charges is 1. For large enough n the solutions include
“composite” sets, formed of two or more subsets which
independently satisfy the anomaly equations. As these are
easier to construct, wewill focus on chiral sets of charges that
are coprime and noncomposite.We refer to this type of chiral
sets as “primitive” solutions to the anomaly equations.
Our goal is to find the most general solution for any n.

Given that there are two equations, finding the most general
solution entails identifying a parametrization of the n
charges in terms of at most n − 2 integer parameters,
and then proving that any primitive solution can be
obtained for certain values of the parameters. To grasp
the difficulty of the problem, extract zn from Eq. (2), and
write Eq. (1) as the Diophantine equation

z31 þ � � � þ z3n−1 ¼ ðz1 þ � � � þ zn−1Þ3: ð5Þ

This is a homogenous cubic equation collectively in the
n − 1 variables, but also a quadratic equation in each
variable. The equation in zn−1 has a discriminant Δ given
by a quartic polynomial in other charges. The question
becomes for what zi ∈ Z with i ≤ n − 2 is zn−1 an integer.
Even the prerequisite problem, of when is

ffiffiffiffi

Δ
p

a rational
number, is highly nontrivial.
A construction method for anomaly-free sets.—We now

introduce amethod of generating anomaly-free sets under the
Uð1Þ gauge symmetry. Our main observation is that given
two integer solutions to the system of equations (1) and (2),
fx⃗g≡ fx1;…; xng and fy⃗g≡ fy1;…; yng, another integer

solution can be constructed by taking a certain linear
combination of the two sets with coefficients which are
cubic polynomials in the charges:

fx⃗g ⊕ fy⃗g≡
�

X

n

i¼1

xiy2i

�

fx⃗g −
�

X

n

i¼1

x2i yi

�

fy⃗g: ð6Þ

Wewill refer to the operation, labeled by⊕, which acts on the
fx⃗g and fy⃗g sets, as the “merger” and to its result as the
merged set. The merger operation satisfies

fy⃗g ⊕ fx⃗g ¼ −fx⃗g ⊕ fy⃗g;
f−x⃗g ⊕ fy⃗g ¼ fx⃗g ⊕ f−y⃗g ¼ fx⃗g ⊕ fy⃗g: ð7Þ

Themerger canbe applied again onfx⃗g ⊕ fy⃗g and eitherfx⃗g
or fy⃗g, and the same procedure can be repeated, leading to
sequences of parametric solutions to the anomaly equations.
There is no guarantee that the merged set is chiral. If one

or both of fx⃗g and fy⃗g are chiral, the merger fx⃗g ⊕ fy⃗g is
sometimes vectorlike. More surprisingly, the merger of two
vectorlike sets is often chiral. We use this observation to
construct solutions to the anomaly equations.
Solution for an even number of fermions.—As the

vectorlike sets with an even number n of Weyl fermions
look qualitatively different than the ones with odd n, we
treat the two cases separately. Our main result for even n is
that a chiral solution is generated by the merger of the
following vectorlike sets:

fv⃗þg ¼ fl1; k1;…; km;−l1;−k1;…;−kmg;
fv⃗−g ¼ f0; 0;l1;…;lm;−l1;…;−lmg; ð8Þ

where m ¼ n=2 − 1 ≥ 2, and the n − 2 parameters (ki, li,
1 ≤ i ≤ m) are integers. Note that l1 is the only parameter
common to both sets. Since fv⃗þg and fv⃗−g are vectorlike
sets, they are anomaly-free so their merger,

fz⃗g ¼ fv⃗þg ⊕ fv⃗−g; ð9Þ

is automatically a solution to the anomaly equations (1)
and (2). Before proving that this solution is the most
general one (up to an integer rescaling), we discuss the
constraints on its parameters.
The merger operation is a vector sum with coefficients

given by cubic polynomials in charges, introduced in
Eq. (6), which in this case are

Sþ ¼
X

m−1

i¼1

ðkiþ1 − kiÞl2
i − ðl1 þ kmÞl2

m;

S− ¼ k21l1 þ
X

m

i¼2

k2i ðli − li−1Þ − l2
1lm: ð10Þ

Explicitly, the charges of the merged set are given by
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fz⃗g ¼ fl1Sþ; k1Sþ; k2Sþ þ l1S−;…; kmSþ þ lm−1S−;

−l1Sþ þ lmS−;−k1Sþ − l1S−;…;−kmSþ − lmS−g:
ð11Þ

The charges of this set are quartic polynomials in the
integer parameters. If one is interested in finding only
primitive solutions, then fz⃗g must be divided by gcdðz⃗Þ to
ensure that the set is coprime. Without further restrictions,
each solution is generated by several choices of the integer
parameters. For example, flipping the sign of all the
parameters leaves the set invariant.
We are interested in a set with n nonzero charges, which

implies that certain values of the integer parameters should
be avoided: l1, k1 ≠ 0, Sþ ≠ 0, k2Sþ ≠ −l1S−, etc.
The chirality conditions (3) are satisfied provided
other nðn − 1Þ=2 restrictions are imposed on the integer
parameters. The simplest of these are lm ≠ 0, S− ≠ 0,
l1 ≠ −k1, km ≠ l1, and li ≠ li−1, ki ≠ ki−1 for
i ¼ 2;…; m. More complicated chirality conditions
are of the types ðki þ ki0 ÞSþ ≠ −ðli−1 þ li0−1ÞS−,
ðki − ki0 ÞSþ ≠ −ðli − li0 ÞS−, ðl1 − kiÞSþ ≠ liS−, etc.
Proof of generality for even n.—In order to prove that

the most general solution for an even number n of chiral
fermions is given by the set fz⃗g of Eq. (9), we consider an
arbitrary chiral set fq⃗g, which is a solution to Eqs. (1)
and (2), and identify n − 2 integers such that fz⃗g is the
same as fq⃗g up to an overall rescaling by an integer.
To do that we first determine ratios of integer parameters

in terms of the charges of Eq. (11):

k1
l1

¼ q2
q1

;

1

l1

ðkiþ1 − kiÞ ¼
1

q1
ðqiþ2 þ qmþiþ2Þ;

1

l1

ðliþ1 − liÞ ¼
qiþ2 þ qmþiþ3

q2 þ qmþ3

; ð12Þ

for any 1 ≤ i ≤ m − 1. From these recursive relations one
can determine n − 3 integer parameters as rational func-
tions of the fq⃗g charges times l1. Many of these rational
functions can be simplified by using the linear equation
q1 þ � � � þ qn ¼ 0. There is one more nontrivial relation
that follows from summing over a pair of charges:
S−=Sþ ¼ −ðq2 þ qmþ3Þ=q1. However, this relation also
follows from Eq. (10) and the anomaly equations for fq⃗g.
We need to solve Eq. (12) with ki, li as integer variables.

The solution up to a common integer rescaling, for an
arbitrary fq⃗g, is

ki ¼ ðq2 þ qmþ3Þ
X

iþ1

α¼2

ðqα þ ð1 − δα;2ÞqmþαÞ;

li ¼ q1
X

iþ2

α¼3

ðqα−1 þ qmþαÞ; ð13Þ

for 1 ≤ i ≤ m, where δα;2 is the Kronecker symbol. We
have thus established that for any anomaly-free set fq⃗g
there are some integers ki, li such that the fz⃗g set
introduced in Eqs. (8) and (9) is proportional to fq⃗g.
The above expressions for the parameters imply that the
fz⃗g set is given by fq⃗g multiplied by an integer:

fz⃗g ¼ −q1S−fq⃗g: ð14Þ
The remaining issue is what happens for a fq⃗g that gives
S− ¼ 0. We point out that under the q2 ↔ qmþ3 inter-
change only k1 is modified. Given that fq⃗g is chiral,
Eq. (13) implies l1 ≠ 0, so that S− changes when k1
changes. Thus, the S− ¼ 0 case is avoided by changing the
ordering within fq⃗g.
This completes the proof that any solution fq⃗g can be

generated, up to an integer rescaling, by a certain choice for
the integer parameters in our set of Eq. (9).
Anomaly-free chiral sets with 6 Weyl fermions.—Let us

consider the particular case of n ¼ 6 fermions. The cubic
equation (1) takes the symmetric form

ðz1þ z2Þðz2þ z3Þðz3þ z1Þ¼−ðz4þ z5Þðz5þ z6Þðz6þ z4Þ:
ð15Þ

The general solution (9) for n ¼ 6 is parametrized by 4
integers, k1, k2, l1, l2:

fz⃗g¼fl1;k1;k2;−l1;−k1;−k2g⊕ f0;0;l1;l2;−l1;−l2g:
ð16Þ

Its charges are given by quartic polynomials:

z1 ¼ l1ðl2
1ðk2 − k1Þ − l2

2ðl1 þ k2ÞÞ;
z2 ¼ k1ðl2

1ðk2 − k1Þ − l2
2ðl1 þ k2ÞÞ;

z3 ¼ l2
1k1ðk1 − k2Þ − l2ðl1 þ k2Þðl2

1 − l1k2 þ k2l2Þ;
z4 ¼ l2

2k2ðl1 þ k2Þ − l1ðk2 − k1Þðl2
1 þ k1l2 þ k2l2Þ;

z5 ¼ l2
1k2ðk2 − k1Þ þ l2ðl1 þ k2Þðl2

1 − l1k2 þ k1l2Þ;
z6 ¼ l1ðl2

2ðl1 þ k2Þ þ ðk2 − k1Þðk2l2 − l1k2 þ k1l2ÞÞ:
ð17Þ

Anecessary condition for this set to bechiral isk1,l1,l2 ≠ 0,
while k2 ¼ 0 typically gives a chiral set. Table I collects the
primitive solutions in canonical form with z1 ≤ 12, a corre-
sponding choice of ðk1; k2;l1;l2Þ, and the gcd (z⃗).
The canonical form (4) implies that zi þ zi0 has the same

sign as zi for i < i0, so Eq. (15) requires z2z5 < 0. As
Eq. (15) is invariant under charge permutations, the
interchange z1 ↔ z4 gives z3z5 < 0, and z2 ↔ z5 leads
to z3z4 < 0. Then Eq. (2) allows only two signatures:
fþ;−;−;þ;þ;�g.
General solution for an odd number of fermions.—Our

key result for an odd number n of Weyl fermions is that the
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general solution is given by the merger of the two vectorlike
sets

fu⃗þg ¼ f0; k1;…; kmþ1;−k1;…;−kmþ1g;
fu⃗−g ¼ fl1;…;lm; k1; 0;−l1;…;−lm;−k1g; ð18Þ

where m ¼ ðn − 3Þ=2 ≥ 1. The n − 2 integer parameters
are k1;…; kmþ1;l1;…;lm, with only k1 common to both
sets. The merged set is then

fz⃗g ¼ fu⃗þg ⊕ fu⃗−g
¼ fl1S−; k1Sþ þ l2S−;…; km−1Sþ þ lmS−;

kmSþ þ k1S−; kmþ1Sþ;−k1Sþ − l1S−;…;

−kmSþ − lmS−;−kmþ1Sþ − k1S−g; ð19Þ

where the entries adjacent to the first ellipsis are removed
when m ¼ 1. The sums S� are given in terms of the fu⃗�g
charges as in Eq. (6),

Sþ ¼
X

m−1

i¼1

kiðl2
iþ1 − l2

i Þ þ kmðk21 − l2
mÞ − kmþ1k21;

S− ¼
X

m−1

i¼1

k2i ðli − liþ1Þ þ k2mðlm − k1Þ þ k2mþ1k1: ð20Þ

The conditions for nonzero charges and for chirality are l1,
k1, kmþ1 ≠ 0, S� ≠ 0, k1 ≠ lm, li ≠ liþ1, ki ≠ kiþ1, and
more complicated ones, similar to the even n case.
Following the analysis for even n, we compare fz⃗g to an

arbitrary anomaly-free chiral set fq⃗g and determine ki, li
such that fz⃗g ∝ fq⃗g. From Eq. (19) we find

1

k1
ðkiþ1−kiÞ¼

qiþ1þqmþiþ3

q1þqmþ3

; 1≤ i≤m;

l1

k1
¼−

q1
qmþ2þqn

;

1

k1
ðliþ1−liÞ¼−

qiþ1þqmþiþ2

qmþ2þqn
; 1≤ i≤m−1; ð21Þ

and also S−=Sþ ¼ ðqmþ2 þ qnÞ=ðq1 þ qmþ3Þ. Using these
recursive relations we derive an integer solution for the
k1;…; kmþ1 and l1;…;lm parameters:

ki ¼ ðqmþ2 þ qnÞ
X

i

α¼1

ðqα þ qmþ2þαÞ;

li ¼ −ðq1 þ qmþ3Þ
X

i

α¼1

ðqα þ ð1 − δα;1Þqmþ1þαÞ: ð22Þ

This choice for parameters generates the arbitrary set times
an integer: fz⃗g ¼ −ðq1 þ qmþ3ÞS−fq⃗g. Again, S− ≠ 0 can
be avoided by the transposition q1 ↔ qmþ3. Combined
with the even n case of Eq. (14), this shows that our
solutions are the most general ones for any n.
As an example, note that n ¼ 15 is the number of Weyl

fermions in one generation of standard model quarks
and leptons. For ðk1;…; k7Þ ¼ ð−1; 1; 3; 0;−2; 0;−2Þ,
ðl1;…;l6Þ ¼ ð3; 0; 3; 1;−2; 1Þ, and after dividing by
gcd ¼ −2, Eq. (19) gives the chiral set of charges
f6;−4;−4;−4;−3;−3; 2; 2; 2; 1; 1; 1; 1; 1; 1g. These are
the hypercharges of the quarks and leptons, taken as
left-handed fields, for a normalization of the Uð1ÞY gauge
coupling where the quark doublet has hypercharge þ1. A
nonstandard example with n ¼ 15 is k1 ¼ 1, l2i ¼ 0,
l2i−1 ¼ k2iþ1 ¼ −k2i ¼ 1, i ¼ 1, 2, 3, giving the chiral
set f8;8;8;−7;−7;−7;−7;−7;−7;−7;6;6;6;6;1g, which
is also anomaly free under an SUð3Þ × Uð1Þ symmetry.
Analogously to the case of even n, the general solution

for odd n given in Eq. (19) is a quartic polynomial in n − 2
integer parameters. An exception occurs for n ¼ 5, as the
solution can be reduced to a cubic polynomial [10].
Conclusions.—A long-standing problem in particle phys-

ics is how to identify anomaly-free sets of chiral fermions
charged under a U(1) gauge symmetry. This requires
solving the anomaly equations, including a Diophantine
cubic equation for which there are no generic methods. The
problem is relevant for dark matter sectors, flavor breaking
structures, nonstandard neutrino models, extensions of the
electroweak group, hidden sectors, and other theories.
In this Letter we have solved the U(1) anomaly equations

in complete generality and for any number of chiral
fermions n. Our analytic solutions, given in Eq. (9) for
even n, and in Eq. (19) for odd n, are parametrized by n − 2
integers. We have proven that these are the most general
solutions, by showing that for any anomaly-free set of
charges there exist n − 2 integers which generate that set,
up to an overall rescaling by an integer (which can be
absorbed by a redefinition of the gauge coupling).
To obtain the general solutions, we have developed a

method of constructing anomaly-free sets of chiral fer-
mions starting from two sets of vectorlike fermions. The
method relies on the merger operation introduced in
Eq. (6). This is a powerful tool to generate chiral U(1)
gauge theories with arbitrary fermion content.

TABLE I. Primitive solutions to the anomaly equations for
6 fermions in canonical form for z1 ≤ 12. A choice of the k1, k2,
l1, l2 parameters and the greatest common divisor that generate
the primitive solution from the set (17) are shown.

Primitive solution fz⃗g=gcdðz⃗Þ ðk1; k2;l1;l2Þ gcdðz⃗Þ
f5;−4;−4; 1; 1; 1g ð1;−2; 1; 2Þ 1
f6;−5;−5; 3; 2;−1g ð2; 0; 1;−1Þ 1
f11;−9;−9; 4; 4;−1g ð2; 3; 2;−2Þ 8
f11;−9;−9; 5; 1; 1g ð1; 3; 1;−1Þ 2
f11;−10;−8; 5; 4;−2g ð−1; 2; 2;−1Þ 2
f12;−11;−10; 8; 6;−5g (3,2,2,3) 10
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