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Gravitational waves emitted during the merger of two black holes carry information about the remnant
black hole, namely its mass and spin. This information is typically found from the ringdown radiation as the
black hole settles to a final state. We find that the remnant black hole spin is already known at the peak
amplitude of the gravitational wave strain. Using this knowledge, we present a new method for measuring
the final spin that is template independent, using only the chirp mass, the instantaneous frequency of the
strain, and its derivative at maximum amplitude, all template independent.
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Introduction.—The advent of gravitational wave (GW)
astronomy has granted us the opportunity to observatio-
nally study compact binary coalescences. During the course
of the first two observing runs, LIGO [1] and Virgo [2]
detected GWs from a total of ten coalescing binary black
holes (BBHs) and one binary neutron star [3,4]. These
systems have hinted at the population properties of BBHs
such as the distributions of mass, spin and redshifts [5], and
have placed GW observations into the new era of multi-
messenger astronomy [4,6].
In the few years since the first detection of GWs [7], we

have learned a tremendous amount about the parameter
space of stellar-mass black holes (BHs) [5]. Each stage of the
coalescence provides information about the BBH system;
this study focuses on the parameters describing the remnant
BH. The product of a BBH merger is a perturbed BH that
emits ringdown radiation as it settles to a Kerr BH. This
process provides fundamental information to understand
gravity in its most extreme regime. Perturbation theory tells
a compelling story about how perturbed BHs, like the
remnant of a BBH merger, lose the information about the
disturbance, often called hair, in the form of GWs [8].
Perturbed BHs ring down or emit GWs with a frequency
(ωQNM) and decay time (τQNM) characterized by the BH
mass and spin [9], providing the means to determine the
remnant BH parameters upon the detection of GWs.
The GW during this ringdown phase is generally

represented as the sum of quasinormal modes, each
expressible as a damped sinusoid with its own ωQNM
and τQNM, fixed by the mass and spin of the final BH
[10–12]. The Echeverria formulas [13] provide relation-
ships to determine the BH mass and spin from ωQNM and
τQNM using spheroidal harmonics.
There have been attempts to measure ωQNM and τQNM of

the ringdown [14–20] and as the detectors improve in

sensitivity, this will become more viable. One commonly
considered method is to estimate the ringdown parameters
by matching directly to the exponentially decaying ring-
down, where Ref. [17] finds consistent results for
GW150914 searching for damped sinusoids. The possibility
of using GWs to detect this spectrum of radiation is often
referred to as BH spectroscopy [21–23]. The short duration
and low amplitude of the signal expected from stellar-mass
mergers, however, makes this postmerger phase challenging
to detect, which is further compounded by the reliance upon
knowing when ringdown begins [24,25].
Because of these challenges, current approaches [26–28]

to estimate the spin of the final BH match the data to
theoretical models of the inspiral. Fortunately, numerical
relativity (NR) provides the map from initial to final
parameters [29–31] that are used to estimate the final spin.
For systems with many cycles of inspiral, this method can
predict the remnant spin with precision, assuming general
relativity (GR). It is desirable to obtain the remnant spin
independently of matched filtering of either the inspiral or
ringdown in order to perform tests of GR [26,32–34]. One
can also perform tests of GR directly from the peak
frequency [35].
With the goal of avoiding the use of the exponentially

decaying ringdown, we propose a method of determining
the final spin that takes advantage of the higher amplitude
at the merger of two BHs. The method proposed here builds
on earlier work by Healy et al. [36] which connected the
instantaneous frequency of the GW at peak amplitude to
ωQNM and τQNM of the ringdown. While it is not obvious
that such a relationship should exist, there have been hints
of the merged black hole entering a perturbative regime as
early as the peak amplitude [36–39] with the radiation near
the peak amplitude of the strain being described by
quasinormal modes that include the overtones. In this
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Letter, we find that the spin of the remnant black hole is
already known at the peak amplitude.
Inspired by the results of Healy et al., we create a map

linking the instantaneous frequency at maximum amplitude
(ωpeak), the derivative of the instantaneous frequency at
maximum amplitude ( _ωpeak), and the chirp mass (M) to the
dimensionless remnant spin (af). One advantage of this
method is that all measurements involved, ωpeak, _ωpeak, and
M, are independent of fitting the data to a model wave-
form. Furthermore,M has the advantage of needing only a
few prepeak cycles to obtain a good measurement using a
well-known gravitational-wave algorithm, Coherent
WaveBurst (CWB) [40]. In the following we (a) demon-
strate a tight relation between the frequency properties
measured at peak and the spin of the final BH and
(b) develop an algorithm to exploit this relationship on
GW observations.
In the Methodology section, we describe the NR data

used to derive a connection from ωpeak, _ωpeak,M to af and
discuss the associated errors. In the Final Spin section, we
examine the viability of the relationship as a form of
parameter estimation with noisy data. Finally, we summa-
rize our findings in the Conclusions section.
Methodology.—NR Catalog and Errors: The relation-

ships found in this Letter are based upon the use of 112 NR
simulations provided by the Georgia Tech waveform
catalog, 47 of which are nonspinning and 65 of which
are aligned spin, with mass ratios 1 < q < 10 [41]. The
Georgia Tech waveforms are produced using the MAYA

code [42–45], a branch of the Einstein Toolkit [46], a NR code
built upon Cactus with mesh refinement from Carpet [47] with
the addition of thorns to calculate various quantities during
the simulation including an apparent horizon solver [48].
We create a map from ωpeak, _ωpeak, M to af. As will be

described in subsection “Fitting to final spin,” this equates
to a mapping from the dimensionless instantaneous fre-
quency at maximum amplitude (ω̂peak), the derivative of the
dimensionless instantaneous frequency at maximum ampli-
tude ( _̂ωpeak), and the symmetric mass ratio (η) to af.
In order to create this mapping, ω̂peak, _̂ωpeak, and af are

obtained from the NR simulation data. In this Letter we use
the strain hðtÞ for ease of working with the GW detectors,
given

hðtÞ ¼ hþðtÞ − ih×ðtÞ ¼
Z

t

−∞
dt0

Z
t0

−∞
dt00ψ4ðt00Þ;

and computed according to [49]. Strain is represented as a
sum of spin-weighted spherical harmonics −2Yl;m given by

hðt; θ;ϕÞ ¼
X
l;m

−2Yl;mðθ;ϕÞhl;mðtÞ;

where hl;m are excited depending on the inspiral param-
eters and the binary’s orientation with respect to the

observer. In aligned spin scenarios and face on orientations,
the l ¼ 2, m ¼ 2 mode dominates the signal, and, there-
fore, this study uses only the l ¼ 2, m ¼ 2 mode [50–53].
The GWamplitude is thus jh22ðtÞj, and the instantaneous

frequency is found as the derivative of the phase, i.e., _ϕðtÞ
where ϕðtÞ ¼ arg½h22ðtÞ�. ω̂peak and _̂ωpeak are obtained
simply by identifying the time at which the amplitude
reaches a maximum and grabbing the instantaneous fre-
quency and its time derivative at that time. This is shown
visually in Fig. 1. Note af is determined from the apparent
horizon of the remnant BH.
The finite spatial and temporal resolutions of NR

simulations introduce systematic uncertainty into the esti-
mates of frequency and spin. By repeating each simulation
at multiple resolutions, the error is found to be of the order
of 0.01% for af, 1% for ω̂peak, and 1.4% for _̂ωpeak. These
uncertainties account for the spread in the fit shown
in Fig. 2.
Fitting to final spin: With the data selected and the NR

errors understood, we can create a fit that connects the peak
amplitude of GW strain to the final BH spin. In order to
create this fitting from ωpeak, _ωpeak, and M to af using NR
simulations, we utilize the following relationships:

ω̂η3=5 ¼ ωM; ð1Þ

_̂ωη6=5 ¼ _ωM2; ð2Þ

where η is the symmetric mass ratio defined as a function of
the initial masses m1 and m2:

η ¼ m1m2

ðm1 þm2Þ2
; ð3Þ

FIG. 1. The figure depicts the amplitude and the frequency
during merger. The vertical dotted line denotes the time of
maximum amplitude and the horizontal dotted line shows the
corresponding instantaneous frequency.
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and M is the chirp mass expressible as

M ¼ η3=5M ¼ c3

G

�
5

96
π−8=3f−11=3 _f

�
3=5

: ð4Þ

These lead us to plot the spin of the remnant BH against a
function of ω̂peakη

3=5 and _̂ωpeakη
6=5 which will take the form

x ¼ ln½ðω̂peakη
3=5Þ−11=5ð _̂ωpeakη

6=5Þ4=5�: ð5Þ

The resulting fit is shown in Fig 2. Adopting the same
functional form as Healy et al. [36], we obtain the
following best fit relationship:

af ¼ −0.216x3 þ 0.415x2 − 0.252xþ 0.989; ð6Þ

with an average spread of Δaf ¼ 0.032.
Final spin.—Having found an NR derived relationship

relating ωpeak, _ωpeak, and M to af, it is important to study
how these values are obtained from real data and how
precise this method will be when faced with a detection.M
is measured by burst searches that fit the frequency
evolution of the signal [40]. By analyzing the recovered
M of existing CWB runs, and using the knowledge that the
uncertainty scales as 1/signal-to-noise ratio (SNR) [54], we
estimate that the uncertainty inM as recovered by CWB is
∼1.5=SNR. This contributes an additional uncertainty of
ð126=SNRÞ% to af. For the SNR ¼ 100 runs we analyze in
this Letter, this adds an uncertainty of 1.26% to af.
Since GW detector data are noisy, we cannot reliably

obtain ωpeak and _ωpeak directly without first denoising it. In
order to reconstruct a signal out of the noise, we use
BayesWave, a search pipeline that relies on modeling the

GW as a number of sine Gaussians whose sum results in a
coherent GW signal in a detector network [55]. By using
this morphology-agnostic approach, the reconstructed
waveform is robust against uncertainties which may be
present in templated analyses. The latter, often referred to
as CBC analyses, model the waveform based on the time
orbital evolution of compact binary coalescences [56].
BayesWave provides an independent, complementary esti-
mate of the waveform morphology, and consequently
avoids systematic uncertainty in the frequency evolution
which might be present in the best fit CBC waveform
[57,58]. In this study we analyze the waveform as recon-
structed by BayesWave for the Livingston detector only.
To quantify the expected uncertainty in the remnant spin,

we performed a systematic Monte Carlo study whereby sets
of BBH signals with increasing SNR [59] were added to
stationary Gaussian noise colored with the power spectral
density of O1 era LIGO detectors. The underlying wave-
forms for these “injections” were then recovered using
BayesWave. For a SNR of 100, we injected a h22 signal
consistent with that of GW150914 in 2000 realizations of
Gaussian noise and recovered ωpeak and _ωpeak for the
median waveform of each. The value of ωpeak was obtained
by first calculating the amplitude envelope of the median
whitened waveform (using a PYTHON implementation of
the Hilbert-Huang transform [60]) and then locating the
time at which the amplitude is maximum. Then the median
time frequency track, outputted by BayesWave, is used to
identify the frequency and the time derivative of the
frequency at the given time.
Figure 3 shows the cumulative probability distribution of

the estimated af for our 2000 injections. The solid black
line denotes the median, the solid red line denotes the true

FIG. 2. We plot the dimensionless spin of the remnant black
hole versus a function of symmetric mass ratio, instantaneous
dimensionless frequency, and its time derivative at maximum
strain for aligned spin numerical relativity waveforms. The solid
line shows the fitting relation described in the “Fitting to final
spin” subsection.

FIG. 3. We plot the cumulative probability distribution of the
final dimensionless spin obtained for a GW150914-like signal
injected into noise and recovered using BayesWave with
SNR 100. The solid black line shows the median recovered spin
and the dotted black lines show the 90% confidence interval. The
solid red line shows the true spin.
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final spin, and the dotted lines show the 90% confidence
interval, which is af ¼ ð0.51; 0.77Þ for SNR of 100.
To better understand how this error scales with SNR, we

used the same technique just described with 250 injections
each for SNRs 40, 60, 80, and 100. The resulting medians
and 90% confidence intervals are shown in Table I.
Conclusions.—This study finds that the remnant spin is

known at the peak amplitude and presents a method of
estimating it from the chirp mass, the frequency at
maximum amplitude of the strain, and its derivative in
an analytic relationship. This allows us to make use of the
high SNR at the peak to estimate the final spin before
entering the perturbative ringdown regime.
In order to understand the viability of this study as a

parameter estimation method, we analyzed the distribution
of the remnant spin obtained via recovering the waveform
of a GW150914-like signal with increasing SNRs from 40
to 100. We demonstrate that we can reliably place bounds
on the spin of the remnant BH using information found near
the peak amplitude when the signal is dominated by the
l ¼ 2, m ¼ 2 mode.
Our method avoids the usage of BBH templates, instead

obtaining ωpeak and _ωpeak from a BayesWave reconstruction
andM from CWB.While matched filtering methods likely
place a tighter bound on the remnant spin, our alternate
approach is not subject to the same systematic biases due to
waveform modeling present in the matched filter search.
There remain systematic errors due to the fit we are using to
determine the final spin from the peak amplitude. In
addition, the fitting formula is an interpolation over a
discrete set of NR templates and might change if more NR
simulations are added to the fit.
The next steps in this study will see the method applied

to all the LIGO/VIRGO BBH detections with reasonable
BayesWave reconstructions from O1, O2, and, soon, O3. It
will also be interesting to see the effect of adding precess-
ing runs to the fit and whether this analysis can be expanded
to include higher modes.
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