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Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain

(Received 3 July 2019; published 8 October 2019)

We show that the generalization of the relative entropy of a resource from states to channels is not
unique, and there are at least six such generalizations. Then, we show that two of these generalizations are
asymptotically continuous, satisfy a version of the asymptotic equipartition property, and their regulariza-
tions appear in the power exponent of channel versions of the quantum Stein’s lemma. To obtain our results,
we use a new type of “smoothing” that can be applied to functions of channels (with no state analog). We
call it “liberal smoothing” as it allows for more spread in the optimization. Along the way, we show that the
diamond norm can be expressed as a max relative entropy distance to the set of quantum channels, and
prove a variety of properties of all six generalizations of the relative entropy of a resource.
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Introduction.—In recent years, it has been recognized
that many properties of physical systems, such as quantum
entanglement, asymmetry, coherence, athermality, contex-
tuality, and many others, can be viewed as resources
circumventing certain constraints imposed on physical
systems (see [1] and references therein). Each resource
can be classified as being classical or quantum, static (e.g.,
entangled state) or dynamic (e.g., quantum channel), noisy
or noiseless, leading to numerous interesting quantum
information processing tasks [2] (e.g., quantum teleporta-
tion [3]). While there are many ways to quantify the
resourcefulness of such properties, all quantifiers of a
resource must satisfy certain conditions such as monoto-
nicity under the set of free operations. Typically, there are
numerous measures that satisfy these conditions, but what
can single out a given measure is an operational interpre-
tation, giving it meaning beyond its sheer ability to
quantify, somewhat vaguely, the resource.
The relative entropy of a resource, which was originally

defined in [4] for entanglement theory, is an example of a
measure that has such an operational interpretation in many
quantum resource theories (QRTs). First, it was shown in
[5,6] to be a unique measure in reversible QRTs and, then,
was shown to be the unique asymptotic rate of intercon-
version among static resources under resource nongenerat-
ing operations [7]. Moreover, it was shown, very recently
[8,9], that resource erasure as a universal operational task
leads to the (regularized) relative entropy of a resource as
the optimal rate (this idea was first laid out in [10]).
In addition, this measure satisfies the asymptotic equipar-
tition property (AEP) [11], appears as an optimal rate in the
generalized quantum Stein’s lemma [11], and is asymp-
totically continuous [12,13], a property also linked to it

being a nonlockable measure [14]. Because of all of these
properties, the relative entropy of a resource plays a major
role in many QRTs [1].
In this Letter, we study six generalizations of the

quantum relative entropy of a resource from static resources
(i.e., states) to dynamic ones (i.e., channels). Four of these
measures were introduced very recently in [15,16]. We
show that for two of them, the relative entropy of the
dynamical resource is asymptotically continuous, satisfies a
version of the AEP, and a version of their regularization
appears as optimal rates in a version of the quantum Stein’s
lemma for channels. In addition, we show that all these
measures are, indeed, generalizations to dynamical resour-
ces in the sense that they reduce to the relative entropy of a
static resource for replacement (i.e., constant) channels.
Resource theories of quantum processes.—A QRT con-

sists of a function F taking any pair of physical systems A
and B to a subset of completely positive and trace
preserving (CPTP) maps FðA→ BÞ ⊂ CPTPðA→ BÞ,
where CPTPðA → BÞ is the set of all CPTP maps (i.e.,
quantum channels) from BðAÞ (bounded operators on
Hilbert space of system A) to BðBÞ [15–21]. The mapping
F is a quantum resource theory if the following two
conditions hold: (1) For any physical system A the set
FðA → AÞ contains the identity map idA. (2) For any three
systems A, B, C, if M ∈ FðA → BÞ and N ∈ FðB → CÞ,
thenN ∘M ∈ FðA → CÞ. Denoting by 1 the trivial Hilbert
space, we identify Fð1 → AÞ with the set of free density
matrices in BðAÞ. That is, a density matrix ρ ∈ Fð1 → AÞ
can be viewed as the CPTP map ρðzÞ ¼ zρ for all z ∈ C.
For simplicity, we will write Fð1 → AÞ≡FðAÞ. Typically,
QRTs are physical in the sense that they arise from some
physical constraints and, therefore, admit a tensor product
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structure. That is, the set of free operations F satisfies the
following additional conditions: (3) The free operations are
“completely free”: For any three physical systems A, B, and
C, if M ∈ FðA → BÞ, then idC ⊗ M ∈ FðCA → CBÞ.
(4) Discarding a system (i.e., the trace) is a free operation:
For any system A, the set FðA → 1Þ is not empty. The
above additional conditions are very natural and satisfied
by almost all QRTs studied in literature. They imply the
following properties [1]: (a) If M1 and M2 are free
channels, then M1 ⊗ M2 is also free. (b) Appending free
states is a free operation: For any given free state σ ∈ FðBÞ,
the CPTP map MσðρÞ ≔ ρ ⊗ σ is a free map; i.e., it
belongs to FðA → ABÞ. (c) The replacement map
MσðρÞ ≔ σ, for any density matrix ρ ∈ BðAÞ and a
fixed free state σ ∈ FðBÞ, is a free channel; i.e.,
Mσ ∈ FðA → BÞ. It is also physical to assume that
FðA → BÞ is a closed set, since otherwise, there exists a
sequence of free channels whose limit is a resource
channel. Finally, we will assume that for any integer n,
free channel N ∈ FðA1 � � �An → B1 � � �BnÞ, and two per-
mutation channels Pπ

A and Pπ−1
B corresponding to a permu-

tation π on n elements, we have

Pπ−1
B ∘N A1���An→B1���Bn

∘Pπ
A ∈ FðA1 � � �An → B1 � � �BnÞ:

Note that almost all QRTs discussed in literature satisfy this
last condition including entanglement theory, coherence,
athermality, etc. In the rest of this Letter, we will assume
that F satisfies all the above conditions.
The most general physical operation that can be per-

formed on a dynamical resource N ∈ CPTPðA → BÞ can
be characterized with a superchannel [17,18], Θ, defined
for all N ∈ CPTPðA → BÞ as a transformation of the form

Θ½N A→B� ¼ Epost
BE→B0∘N A→B∘Epre

A0→AE; ð1Þ
where Epost ∈ CPTPðBE → B0Þ and Epre ∈ CPTPðA0 →
AEÞ are quantum channels. We say that the superchannel
Θ is free if, in addition, Epost ∈ FðBE → B0Þ and Epre ∈
FðA0 → AEÞ (i.e., Epost and Epre are free). Therefore, any
measure of a resource E∶CPTP → R must satisfy

EðΘ½N A→B�Þ ≤ EðN A→BÞ; ð2Þ
for allN ∈ CPTPðA → BÞ and all free superchannels Θ. In
addition, we require that EðN Þ ¼ 0 if N ∈ FðA → BÞ.
This condition implies that E is non-negative. To see it, take
Epost
BE→B0 in (1) to be the replacement map whose output is

some free state in FðB0Þ, and observe that, for this case,
0 ¼ EðΘ½N �Þ ≤ EðN Þ for all N ∈ CPTPðA → BÞ.
The relative entropy of a resource.—Here, we will

consider two generalizations of the relative entropy of a
resource from the state domain to the channel domain, and
leave four further generalizations to the Supplemental
Material (SM) [19]. The first relative entropy of a dynami-
cal resource N ∈ CPTPðA → BÞ is defined as

DFðN Þ ≔ inf
M∈FðA→BÞ

DðN kMÞ; ð3Þ

with the channel divergence [17,22,23]

DðN kMÞ ≔ max
φ∈DðRAÞ

D½N A→BðφRAÞkMA→BðφRAÞ�; ð4Þ

and DðρkσÞ ¼ Tr½ρ log ρ − ρ log σ� is the relative entropy.
The optimization is over all states φRA, where, without loss
of generality, we can take R ≅ A, and φRA is pure [22,23]. If
the optimization over DðRAÞ is replaced with optimization
over the set of all density matricesFðRAÞ, then one gets the
second generalization [15]

EFðN Þ ≔ min
M∈FðA→BÞ

sup
ρ∈FðRAÞ

D½N A→BðρRAÞkMA→BðρRAÞ�; ð5Þ

where the supremum is over all free states ρ ∈ FðRAÞ and
all dimensions jRj, and the minimum is over all free
channels in FðA → BÞ. Both DF and EF, as well as other
generalizations, were introduced very recently in [15,16],
and in the SM [19], we list all of them along with a few new
ones and discuss some of their properties. For clarity, we
leave the technical details of all proofs to the SM [19].
Theorem 1.—The above relative entropies have the

following properties: (1) Monotonicity: DF and EF behave
monotonically under free superchannels. Specifically, let
Epost ∈ CPTPðBE → B0Þ and Epre ∈ CPTPðA0 → AEÞ be
completely resource nongenerating (RNG) channels, and
let Θ have the form: (1). Then, for all N ∈ CPTPðA → BÞ

DFðΘ½N �Þ ≤ DFðN Þ; EFðΘ½N �Þ ≤ EFðN Þ: ð6Þ

(2) Reduction: Let N ∈ CPTPðA → BÞ be a constant
channelN ðXAÞ ¼ Tr½XA�ωB for all XA ∈ BðAÞ and a fixed
density matrix ωB ∈ DðBÞ. Then,

DFðN Þ ¼ EFðN Þ ¼ DFðωBÞ ≔ min
σ∈FðBÞ

DðωBkσBÞ: ð7Þ

(3) Faithfulness: DFðN A→BÞ ¼ 0 if and only if N ∈
FðA→BÞ. If EFðN Þ¼ 0 for some N ∈CPTPðA→BÞ,
then N must be completely RNG. Moreover, if for
jRj ¼ jAj, the set FðRAÞ contains a pure state with full
Schmidt rank, then

EFðN A→BÞ ¼ 0 ⇔ N ∈ FðA → BÞ: ð8Þ

In contrast to the monotonicity property above, the
function DF behaves monotonically under any RNG
superchannel. This follows directly from the following:
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DFðΘ½N �Þ ¼ min
Ω∈FðA0→B0Þ

DðΘ½N A→B�kΩA0→B0 Þ

≤ min
M∈FðA→BÞ

DðΘ½N A→B�kΘ½MA→B�Þ

≤ min
M∈FðA→BÞ

DðN A→BkMA→BÞ ¼ DFðN Þ;

where the first inequality follows from the fact that Θ is
RNG, and the second from the data processing inequality of
the channel divergence [17]. Note also that, from their
definitions, we always have

EFðN Þ ≤ DFðN Þ ∀ N ∈ CPTPðA → BÞ: ð9Þ

One may wonder if exchanging the min-max order in (3)
and (5) would yield other relative entropy based measures
that are in general different than DF and EF. However, in
the following theorem, we show that this is not the case.
Theorem 2.—Let d∶DðAÞ ×DðAÞ → R be any function

satisfying non-negativity, contractivity (monotonicity)
under CPTP maps, and joint concavity under orthogonally
flagged mixtures: This means that for any two families fρxg
and fσxg of states, and any probability distribution fpxg,

d

�X
x

pxρx ⊗ jxihxj;
X
x

pxσx ⊗ jxihxj
�

≥
X
x

pxdðρx; σxÞ; ð10Þ

where jxi are orthonormal basis states of an auxiliary system.
Moreover, suppose d is convex in the second argument, and
suppose FðA → BÞ is convex. Then,

inf
M∈FðA→BÞ

sup
ρ∈FðRAÞ

dðN A→BðρRAÞ;MA→BðρRAÞÞ

¼ sup
ρ∈FðRAÞ

inf
M∈FðA→BÞ

dðN A→BðρRAÞ;MA→BðρRAÞÞ:

Note that the relative entropy D (as well as the trace
distance and all the Renyi divergences) satisfies (10) with
equality, and therefore, EF and DF will not change by
swapping the min-max order.
Asymptotic continuity.—Since we only consider QRTs

that admit the tensor product structure here, the replace-
ment channels MσðXÞ ¼ Tr½X�σ are free [i.e., in
FðA → BÞ] for any free σ ∈ FðBÞ. In the SM [19], we
show that this implies that EF is bounded as long as the set
of free states contains a full rank state. For example, ifFðBÞ
contains the maximally mixed (uniform) state IB=jBj (were
jBj is the dimension of system B), then

EFðN Þ ≤ DFðN Þ ≤ logðjBj2jAjÞ: ð11Þ

The fact that EF and DF are bounded enable us to prove
that they are also asymptotically continuous.

Definition 3.—A function E∶CPTP → Rþ is said to
be asymptotically continuous if for any M;N ∈
CPTPðA → BÞ,

jEðMÞ − EðN Þj ≤ logðjABjÞfðkM −N k⋄Þ; ð12Þ

where f∶R → R is some function independent on the
dimensions and satisfies limϵ→0þfðϵÞ ¼ 0.
Theorem 4.—Suppose that for any system A, FðAÞ

contains a full rank state. Then, DF is asymptotically
continuous. Moreover, if in addition, for any system A, the
extreme points of FðAÞ are pure states (e.g., entanglement
theory, coherence, etc.), then EF is also asymptotically
continuous.
Remark: The proof of the theorem above is based on a

key observation that the diamond norm can be expressed in
terms of the max relative entropy distance ofN −M to the
set of all quantum channels QðA → BÞ (see SM [19] for
more details). For EF, the condition that the extreme points
of the set of free states are pure states, ensures that the
supremum in (5) can be replaced with a maximum since, in
this case, jRj can be shown to be bounded by jAj. If the
extreme points of the set of free states are not pure states,
but jRj is polynomially bounded in jABj, then in this case,
EF is also asymptotically continuous. This happens, for
example, in the QRT of thermodynamics. Finally, we point
out that asymptotic continuity for certain amortized mea-
sures of entanglement was recently proved in [24].
Asymptotic equipartition property.—The logarithmic

robustness of a dynamical resource N ∈ CPTPðA → BÞ
is defined as [16]

LRFðN A→BÞ ≔ min
M∈FðA→BÞ

DmaxðN A→BkMA→BÞ

≔ log2minft∶ tM ≥ N ;M ∈ FðA → BÞg; ð13Þ

where the ordering tM ≥ N means that tM −N is
completely positive (CP). Here, we also define

LRFðN A→BÞ
≔ min

M∈FðA→BÞ
sup

φ∈FðRAÞ
Dmax½N A→BðφRAÞkMA→BðφRAÞ�:

ð14Þ

Like DF and EF, the functions LRF and LRF are resource
monotones (see SM [19]). Note that, by Theorem 2 the
order sup-min can be exchanged, and furthermore,

LRF ≤ LRF; ð15Þ

with equality if FðRAÞ contains a pure state of full Schmidt
rank. For example, in entanglement theory, system A is
replaced with AB and R with RARB so that FðRARBABÞ
contains the state ϕþ

ðRARBÞðABÞ ¼ ϕþ
RAA

⊗ ϕþ
RBB

, where ϕþ
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stands for the maximally entangled state between the
respective spaces. Hence, ϕþ

ðRARBÞðABÞ has full Schmidt rank

between RARB and AB [even though it is a product state
between Alice (RAA) and Bob (RBB)]. Therefore, in
entanglement theory, LRF ¼ LRF.
The smoothed version of the logarithmic robustness can

be defined as [16]

fLRϵ
FðN Þ ≔ min

N 0∈BϵðN Þ
LRFðN 0Þ; ð16Þ

where

BϵðN Þ ≔ fN 0 ∈ CPTPðA → BÞ∶kN 0 −N k⋄ ≤ ϵg: ð17Þ

The above diamond-smoothed log robustness is a straight-
forward generalization from states to channels and has an
operational interpretation in the setting of resource erasure
[16], generalizing the single-shot part of [9]. However, our
goal here is to define a method for smoothing that is the
least restrictive possible. This will be necessary for a proof
of an AEP for the logarithmic robustness of channels.
For this reason, we consider another (more “liberal”)

way to define smoothing for channels for which there is no
analog in the state domain. For any state φ ∈ DðRAÞ and a
channel N ∈ CPTPðA → BÞ define Bφ

ϵ ðN Þ to be the set of
all CP maps (not necessarily trace preserving) N 0 ∈
CPðA → BÞ satisfying

kN 0
A→BðφRAÞ −N A→BðφRAÞk1 ≤ ϵ: ð18Þ

Clearly, BϵðN Þ ⊂⋂φ∈DðRAÞ B
φ
ϵ ðN Þ. We define the smooth-

ing of LRF as

LRϵ
FðN Þ ≔ max

φ∈DðRAÞ
min

N 0∈Bφ
ϵ ðN Þ

LRFðN 0Þ: ð19Þ

Similarly, we denote by LRϵ
F the above smoothing of LRF.

Note that the above types of smoothing respect the
condition that, for ϵ ¼ 0, the smoothed quantities reduce
to the nonsmoothed ones. Furthermore, from its definition,
it follows that (see SM [19] for more details)

LRϵ
FðN Þ ≤ fLRϵ

FðN Þ; ð20Þ

justifying the name “liberal smoothing.”
In the SM [19], we show that LRϵ

FðN Þ is a resource
monotone, and the regularized versions

LR∞
F ðN Þ≔ lim

n→∞

LRϵ
FðN⊗nÞ
n

; D∞
F ðN Þ≔ lim

n→∞

Dϵ
FðN⊗nÞ

n
;

satisfy D∞
F ðN Þ ≤ LR∞

F ðN Þ. We believe that, in general,
this inequality can be strict. However, as we show now, if

we also revise the type of regularization, then it is possible
to get an equality.
The type of regularization that we consider here

is as follows. For each n ∈ N, and a channel N ∈
CPTPðA → BÞ, we define the quantities

DðnÞ
F ðN Þ ≔ 1

n
max

φ∈DðRAÞ
min

M∈FðAn→BnÞ

D½N⊗n
A→Bðφ⊗n

RAÞkMAn→Bnðφ⊗n
RAÞ�; ð21Þ

and EðnÞ
F is defined exactly as above with FðRAÞ replac-

ing DðRAÞ.
In the SM [19], we show that the limit n → ∞ of DðnÞ

F

and EðnÞ
F exists. Therefore, we define the “regularized”

version of DF and EF to be

Dð∞Þ
F ðN Þ ¼ lim

n→∞
DðnÞ

F ðN Þ; Eð∞Þ
F ðN Þ ¼ lim

n→∞
EðnÞ
F ðN Þ:

We can also use this regularization method for the liberal
smoothed logarithmic robustness quantities LRϵ

F and LRϵ
F.

We define

LRϵ;n
F ðN Þ ≔ 1

n
max

φ∈DðRAÞ
min

N 0∈Bφ⊗n
ϵ ðN⊗nÞ

LRFðN 0Þ ð22Þ

and LRð∞Þ
F ≔ lim

ϵ→0
lim
n→∞

LRϵ;n
F ðN Þ: ð23Þ

The quantities LRϵ;n
F and LRð∞Þ

F are defined analogously
with FðRAÞ replacing DðRAÞ.
Theorem 5.—For all N ∈ CPTPðA → BÞ

Dð∞Þ
F ðN Þ ¼ lim

ϵ→0
lim
n→∞

1

n
LRϵ;n

F ðN⊗nÞ ¼ LRð∞Þ
F ðN Þ:

Moreover, if for any system A the extreme points of FðAÞ
are pure states, then

Eð∞Þ
F ðN Þ ¼ lim

ϵ→0
lim
n→∞

1

n
LRϵ;n

F ðN⊗nÞ ¼ LRð∞Þ
F ðN Þ:

Quantum channel Stein’s lemma (See related work
[17,22,23,25,26]).—Consider the task of discriminating
between n copies of a fixed channel N ∈ CPTPðA → BÞ
and one of the free channels in FðAn → BnÞ. There are two
types of errors in such a task: (1) The observer guesses that
the channel belongs to FðAn → BnÞ while the channel is
N⊗n

A→B. This occurs with probability

αðnÞðN ; Pn;φRAÞ ≔ Tr½N⊗n
A→Bðφ⊗n

RAÞðI − PnÞ�:

Here, we consider the “parallel” case, in which the observer
only provides n copies of a free state φ ∈ FðRAÞ, and
0 ≤ Pn ≤ IAnBn . (2) The observer guesses that the channel
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is N⊗n
A→B while the channel is some Mn ∈ FðAn → BnÞ.

This occurs with probability

βðnÞðPn;Mn;φRAÞ ≔ Tr½Mnðφ⊗n
RAÞPn�;

and the worst case for a given φ ∈ FðRAÞ is

βðnÞF ðPn;φRAÞ ≔ max
Mn∈FðAn→BnÞ

Tr½Mnðφ⊗n
RAÞPn�:

We further define

βðnÞF;ϵðN ;φRAÞ ≔ min βðnÞF ðPn;φRAÞ; ð24Þ

where the minimum is over all Pn satisfying αðnÞðN ; Pn;
φRAÞ ≤ ϵ and 0 ≤ Pn ≤ IRnBn .
Theorem 6.—Let F be a convex resource theory satisfy-

ing all the conditions discussed in the introduction, and
suppose further that the set of free states contains a full rank
state. Then, for all ϵ ∈ ð0; 1Þ,

Ẽð∞Þ
F ðN Þ ¼ max

φ∈FðRAÞ
lim
n→∞

−
log βðnÞF;ϵðN ;φRAÞ

n
; ð25Þ

where

Ẽð∞Þ
F ðN Þ

≔ max
φ∈FðRAÞ

lim
n→∞

min
M∈FðAn→BnÞ

D½N⊗nðφ⊗n
RAÞkMðφ⊗n

RAÞ�
n

:

Note that the only difference between Ẽð∞Þ
F ðN Þ and

Eð∞Þ
F ðN Þ is the order between the limit and the maximum.

Therefore, we must have Ẽð∞Þ
F ðN Þ ≤ Eð∞Þ

F ðN Þ, and it is left
open to determine if this inequality can be strict. If the latter

holds, thatwouldmean that Ẽð∞Þ
F ðN Þ is yet another (distinct)

generalization of the relative entropy of a resource.
Conclusions.—We have seen that DF and EF are

asymptotically continuous, satisfy the AEP, and are related
to a channel version of the quantum Stein’s lemma. To
establish these results, we had to adopt two unconventional
strategies, liberal smoothing and product-state channel
regularization. In this way, lots of the properties in the
state domain carry over to the channel domain. In the SM
[19], we also introduce four additional generalizations of
the relative entropy of a resource. This variety of gener-
alizations indicates that, in the channel domain, things are
much more complicated. We believe that the results and
techniques presented here will provide an initial step
towards the development of QRTwith dynamical resources.
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