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We show that rotating membrane inclusions can crystallize due to combined hydrodynamic and steric
interactions. Alone, steric repulsion of unconfined particles, even with thermal fluctuations, does not lead
to crystallization, nor do rotational hydrodynamic interactions which allow only a marginally stable lattice.
Hydrodynamic interactions enable particles to explore states inaccessible to a nonrotational system, yet,
unlike Brownian motion, Hamiltonian conservation confines the ensemble which, when combined with
steric interactions, anneals into a stable crystal state.
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Biological membranes serve as barriers between the cell
and the outer environment, but unlike most barriers,
biomembranes are fluid [1]. There is immense significance
to their fluidity as it enables cell signaling, cell division,
and more [2]. Moreover, the membrane is not a strictly two-
dimensional (2D) fluid. At large distances the fluids outside
and inside the cell influence the flow in the plane of the
membrane. Thus, the membrane has mixed dimensionality,
transitioning between 2D behavior at small distances to
three-dimensional (3D) behavior at large distances. The
typical distance where this transition occurs is λ ¼
η2D=ð2η3DÞ [3], where η2D is the 2D viscosity of the
membrane and η3D is the 3D viscosity of the outer fluid.
For biological membranes λ ∼ 1 μm, much larger than
typical protein sizes (∼10 nm). Two-dimensional fluid
films are also ubiquitous in science and in industry [4].
In this Letter, we focus on rotating inclusions in a

membrane. An important biological example is ATP
synthase, a transmembrane protein pivotal in the energetic
balance of the cell [see Fig. 1(a) for a cartoon of the system]
[5–12]. Ensembles of such rotor proteins are self-driven
active matter [13–15]. Since no external torque acts upon
the protein its induced flow resembles a torque dipole to
leading order [6]. Recently studied synthetic examples of
2D rotor systems have been collections of externally driven
particles, such asmagnetic colloids at an interface or surface,
rotated by an outer magnetic field [15]. For microscopic
rotors, inertia is negligible. For larger systems, where inertia
cannot be neglected, crystallization can also occur, but froma
mechanism reliant upon the Magnus effect (an inertial lift
force) and hydrodynamically mediated attraction [16,17].
Both effects are absent in the viscous limit we consider.
By studying infinite systems of model rotor proteins, it

was suggested by Lenz et al. [5,6] that a hexagonal lattice is
a marginally stable state of the system. For finite systems
we show that adding steric interactions leads to a lattice

state even when starting from random initial conditions.
We term these combined hydrodynamic and steric inter-
actions as “hydrosteric.” Figures 1(b)–1(d) show the central
result of this work—snapshots of three different simula-
tions of rotor protein assemblies, interacting via different
combinations of short-ranged repulsion and rotation: panel
(b) (marked ), only rotational hydrodynamic interactions;
panel (c) (marked ), only repulsive interactions; and panel
(d) (marked ), both rotational and repulsive interactions.
The insets show the structure factor of each system, given
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FIG. 1. (a) A membrane protein represented as two counter-
rotating disks, one in the membrane, the other in the outer fluid,
with torque strengths τ and −τ, respectively. (b)–(d) Snapshots of
three simulations, with the same initial conditions and taken at
the same time, of (b) rotor proteins with only rotation and no
repulsion, (c) only repulsion and no rotation, and (d) both rotation
and repulsion. The inset of each figure is the structure factor,
showing hexatic ordering for (d) but no distinct ordered structure
for (b) and (c). Systems (c) and (d) are at an area fraction of 0.53.
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by SðqÞ ¼ 1=N
P

i;j e
−iq·ðri−rjÞ, where N is the number of

particles in the ensemble [18]. The six distinct peaks in the
structure factor of system indicate the presence of global
hexagonal order, vs no distinct ordered structure in SðqÞ of
systems and (see SupplementalMaterial for a video [19]).
Rotational interactions can resemble thermal fluctua-

tions, allowing the system to sample configurations in
phase space. However, in unbounded systems, thermal
forces drive particles apart, while rotational interactions do
not. Further, a bounded or periodic system of hard disks
starts to order only at ϕ ∼ 0.7 [20,21]. We observe
hydrosteric crystallization at much lower area fractions,
ϕ ∼ 0.45 (see Fig. 1 and Supplemental Material). In what
follows we present simulations of rotor proteins, but the
essential results are general and should apply to any 2D
rotor systems with the same symmetries.
The hydrodynamic model and its properties.—We start

by describing a driven membrane rotor, modeled as a single
disk of radius a rotating due to an external torque τ, in a flat
membrane at z ¼ 0 whose 2D velocity is v. We assume
membrane incompressibility (∇ · v ¼ 0), and negligible
inertia (small Reynolds number). Under these assumptions,
momentum conservation in the membrane reads

η2D∇2v þ η3D

�∂u
∂z

�

z¼0

þ τ∇⊥δðrÞ ¼ 0; ð1Þ

where u is the r ¼ ðx; yÞ components of the 3D flow in the
outer fluids, and∇⊥ ¼ ð−∂=∂y; ∂=∂xÞ. The second term is
the jump in shear stress from the outer fluids, and the third
is the force due to a point torque. There is no pressure
contribution for purely rotational motion, or a superposition
of such flows. The outer fluids obey the 3D Stokes
equations with the boundary condition u�jz¼0 ¼ v. The
2D stream function Ψ of the velocity v can be computed
using a 2D Fourier transform [F̃ðqÞ ¼ R R

FðrÞeiq·rd2r],
giving

ṽðqÞ ¼ τ

η2D
∇⊥Ψ̃; Ψ̃ ¼ 1

qðqþ λ−1Þ : ð2Þ

In real space ΨðrÞ ¼ 1=4½H0ðr=λÞ − Y0ðr=λÞ�, where H0

and Y0 denote the order zero Struve function and Bessel
function of the second kind, respectively.
For a rotor protein, a second counterrotating disk is

placed a distance l away in the outer fluid, such that the
total torque on the protein is zero [see Fig. 1(a)]. A similar
derivation assuming r ≫ l (see Supplemental Material [19]
and Ref. [5]), gives

vðrÞ ¼ Γ∇⊥Ψ;

ΨðrÞ ¼ 1

2π

�
λ

r
þ π

2

�
Y0

�
r
λ

�
−H0

�
r
λ

���
; ð3Þ

where Γ ¼ 2τl=η2Dλ. For small distances r ≪ λ, the stream
function satisfies Ψ ∼ 1=r. Therefore, v ∼∇⊥Ψ ∼ 1=r2.

Qualitatively, this can be understood as follows: in a 2D
fluid, a Stokeslet [the flow due to a point force δðrÞ] scales
as log r; a rotlet [the flow due to a point torque ∇⊥δðrÞ]
thus scales as v ∼ 1=r. A torque dipole produces another
derivative, leading to v ∼ 1=r2. In the opposite limit, r ≫ λ,
the 3D fluid dominates. A Stokeslet scales as 1=r. The flow
due to a rotating protein should scale as 1=r3, but this term
cancels due to symmetry at the z ¼ 0 plane, and we
have v ∼ 1=r4.
For more than one rotor protein, the stream function

generalizes to the HamiltonianH ¼ P
i≠j ΓiΓjΨðjri − rjjÞ,

where Γi ¼ 2τil=η2Dλ is the strength of the ith torque
dipole. The velocity is given by vi ¼ ð1=ΓiÞ∇⊥

i H [22].
Note thatH is a Hamiltonian in the 2D coordinates, x and y,
and so phase space corresponds to the positions of the
rotors. From Noether’s theorem [23], symmetries of the
Hamiltonian correspond to conservation laws. In our case
there is conservation of the Hamiltonian itself, and of the
first and second moments (from time, translational, and
rotational invariance, respectively).
We take all the “circulations” Γi, to be equal, Γi ¼ Γ

[24]. Conservation of the second moment then simplifies to
μ2 ¼

P
i;j jri − rjj2 ¼ const. As a result of this invariance

the distance between rotors cannot diverge to infinity, and
by invariance of H the distance cannot collapse to zero.
In general, rotor ensembles stay bounded in an area not
much different from their initial area. A crude upper bound
for the radius of the rotating system can be derived as
follows. For a random initial condition, the second moment
is proportional to the initial area and the number of particles
squared, i.e., μ2 ∼ r20N

2. The maximal radius is bounded by
a configuration inwhich all particles but one are at the origin.
The remaining particle will have the maximal possible
distance from the origin, rmax ≤

ffiffiffiffiffiffiffiffiffiffiffi
μ2=N

p
∝ r0

ffiffiffiffi
N

p
. This

bound can be refined by incorporating the conservation of
H, see Supplemental Material [19].
Surprisingly, the dynamics of this overdamped system is

similar to that of point singularities in 2D such as the ideal
vortices of a 2D Euler fluid, or those of the quasigeo-
strophic equations which arise in modeling atmospheric
flows [25,26]. In all such systems two singularities will
orbit around each other, and for four or more the system
becomes nonintegrable leading to chaotic dynamics [27].
Indeed, the near-field interactions for rotor proteins are the
same as for quasigeostrophic vortices.
In what follows, we consider two aspects of membrane

inclusions that are not captured by pure hydrodynamic
interactions. First, membrane inclusions are physical objects
of a finite size with possible interactions with each other.
Second, due to their small size (∼10 nm) thermal noise may
influence their dynamics. We show that adding any type of
repulsion between the rotors can result in the formation of
crystals; sufficiently high temperature can destroy that order.
Repulsive interactions drive crystallization.—An infinite

hexagonal array of rotor inclusions with only hydrodynamic
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interactions (system ) is in a steady state for any lattice
scale d [5]. Because of its Hamiltonian structure, this array is
atmost neutrally stable: a disordered arraywill not crystallize
(see Supplemental Material). Repulsive interactions
(system ) add stability to this fixed point. A linear
perturbation δrðtÞ on a single rotor must have the form
dδr=dt ¼ −αδr⊥ − βδr, where α (β) arises from rotational
(repulsive) interactions. The eigenvalues of this system are
λ ¼ �iα − β; the additional negative component is neces-
sary for linear stability of the hexagonal configuration.
Simple symmetry arguments show that an infinite or con-
fined system with long-ranged repulsive interactions must
form a hexagonal lattice, known as a Wigner crystal [28].
However, this is not the case for a finite system with

only short-ranged repulsive interactions; see Fig. 1(c).
Surprisingly, we find that crystallization still occurs in
such a system when rotation is induced. We examine the
dynamics of a finite, unconfined system of rotor proteins
with short-ranged repulsion with an interaction distance rs,
using either soft, harmoniclike, repulsionU ¼ U0ðr − rsÞ2,
up to an interparticle distance of rs, and zero otherwise, or
exponential (e.g., electrostatically screened interactions)
U ¼ U0e−r=rs .
Evolving the system from random initial conditions, we

discovered that rotation promotes rapid organization into
crystals, even when repulsion alone is not sufficient to
generate crystallization; see Figs. 1(c) vs 1(d). In system ,
a particle moves until it no longer feels its neighbors. At
low concentrations, the system settles in a disordered state.
Adding rotation to the particles, system , stirs and
reshuffles them, until a steady state configuration is reached
where particles are nearly equispaced.
Increased rotor activity yields faster ordering.—To

measure order we examine the structure factor SðqÞ and
the two-dimensional bond-orientational order parameter
Ψj

6 ¼ ð1=njÞ
P

i e
i6θij . Ψj

6 measures the orientation and
degree of hexagonal order around particle j [29], the sum
taken over the nearest neighbors of particle j as found from
Delaunay triangulation [30], nj is the number of nearest
neighbors, and θij is the angle between the bond connecting
particles i and j and the x axis (an arbitrary reference). Let
h·i define averages over all ensemble particles. We define
the average local and global order parameters as hjΨ6ji and
jhΨ6ij, respectively. jhΨ6ij is nearly zero for all initial
random configurations, and is one for a perfect infinite
hexagonal lattice. Purely repulsive interactions lead to a
slight increase in the order parameter (see Fig. 2), but do
not generate completely ordered arrays. Increasing the
circulation Γ increases order in the system, saturating
hjΨ6ji at a value of ∼0.9. Repulsive interactions promote
crystallization but are unnecessary for maintaining order:
once the system has reached the state shown in Fig. 1(d),
turning off repulsive interactions does not destroy the order.
Estimating the lattice rotation rate.—Once formed, the

crystals are not stationary, but rotate around their center of

mass with an angular velocity ΩðrÞ. Figure 3 shows the
angular velocity as a function of radius for a finite system of
particles interacting via Eq. (3) and exponential repulsion.
We note two things about the angular velocity. First, it
decreases with time [Fig. 3(a)] due to the exponential
repulsion. Second, increasing the number of rotors (with
fixed initial area) results in an increase in Ω, see Fig. 3(b).
To explain these features, we construct a simplified model
based on two observations from Figs. 1(d) and 3(a): (1) the
lattice rotates as a nearly rigid body, and (2) it forms a
nearly perfect lattice. We hence assume rigid body rotation
of a lattice with a spacing d and angular velocity Ω̄. With
these simplifications, the velocity in an infinite system must
be zero from symmetry. To see this, consider the central
particle in Fig. 3(c) (marked with a cross). Each two
opposing particles surrounding it will create opposite flows
resulting in zero net velocity. For an infinite system all
particles are identical; therefore, the velocity of each
particle is zero. Thus, for a finite system of size R, the
perimeter dictates the angular velocity of the lattice,
namely, the number of proteins on the edge nr and the
distance between them d, see Fig. 3(c). For R ≪ λ, the

FIG. 2. (a) The average local hjΨ6ji (black) and global jhΨ6ij
(purple) bond order parameters as a function of circulation Γ,
calculated after 2 × 105 time steps for ensemble sizes much
smaller than λ. Each point corresponds to an average over 14
random initial configurations in a system of 400 motors with soft-
core repulsion, with a final area fraction of ∼0.8. Shaded regions
are the standard deviation. (b) The local order parameter as a
function of time. The hue increases with circulation. The black
curve corresponds to the case of no repulsion, the red curve
corresponds to the case of no rotation.
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velocity of the kth protein, in complex notation z ¼ xþ iy,
is dzk=dt ¼ i

P
j ½ðzk − zjÞ=jzk − zjj3�, with distance nor-

malized by λ, and time by 2πλ2=Γ. Assuming Ω ¼ const,
we can calculate it by considering any one protein, e.g., the
particle marked with a disk in Fig. 3(c), with zk ¼ −DeiΩt,
whereD ¼ d=λ. All rows except the four edges cancel, and
as nr → ∞ this gives

Ω⟶
N→∞ 4

D3

Xnr

j¼0

cos ðπn=3nrÞ
n2r

¼ 6
ffiffiffi
3

p

πD3nr
: ð4Þ

After scaling Ω at different times and for different system
sizes according to Eq. (4), all results fall on a single curve;
see Fig. 3(d). In the opposite limit (d ≫ λ) we get Ω ∝
1=ðD3n3rÞ (see Supplemental Material).
Effect of thermal noise.—Proteins are small (∼10 nm)

and prone to thermal forces. Thermal fluctuations must be
added carefully when hydrodynamic interactions are
included, as the thermal motion of one protein effects
others via the fluid. To account for this, we use the positive
definite analog of the Rotne-Prager mobility tensor for a
membrane, given inRef. [31]. Figure 4 presents the results of

increasing temperature on hjΨ6ji and jhΨ6ij for two systems
(with 200 and 400 rotor proteins). At low temperatures the
systems are ordered, transitioning to disorder at about
kBT=τ̃ ∼ 0.3, where τ̃ ¼ η2DΓ is the torque-dipole strength
acting on a rotor.
To estimate the biologically relevant regime, we take the

Péclet number to be Pe ¼ va=D, where v is the hydro-
dynamic advective velocity of Eq. (3) summed over all
particles in the ensemble, and D is the diffusion coefficient
of a rotor protein. Using measurements in the literature
for membrane viscosity (∼1 Pa s [32]), the protein rotation
rate (∼102–103 Hz [7,11,33]) and size (∼10 nm [7]), we
estimate the Péclet number for ATP synthase to be Pe ∼ 2.
In our simulations, this corresponds to a normalized energy
of kBT=τ̃ ∼ 0.1, below the transition point. Thus, biological
systems should be in a relatively ordered state, but thermal
noise is not negligible (see the middle snapshot in Fig. 4).
This estimate does not incorporate steric interactions which
we expect to further stabilize the system. Experimental
evidence exists of lattice formation of ATP synthases in
lipid vesicles and in the mitochondria [8,12,34]. However,
both dimerization [8,34] and curvature [12,35] can play
significant roles in those systems, which are beyond the
scope of this work.
Discussion.—A system of rotor inclusions self-organizes

into a hexagonal lattice through hydrosteric interactions.
At low rotor protein concentrations, with only repulsion,
the system ( ) is quenched in a disordered state. Adding
rotation ( ), shuffles the positions of the particles through
their hydrodynamic interactions, driving them to an ordered
state. Similarly to thermal agitation, activity allows the
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FIG. 3. (a) Angular velocityΩ as a function of radius, increased
hue corresponds to progression in time. Density decreases with
time, resulting in lower angular velocity. At long times the lattice
rotates as a nearly rigid body. (b) The increase in hue corresponds
to increasing the number of rotors, from 100 to 1200. (c) Assum-
ing rigid body rotation and a perfect, finite, hexagonal lattice,
whose center is marked with a cross symbol, the angular velocity
of the point marked with a dot is equal to that of the entire crystal.
From symmetry, any motor in the gray hexagon or on the black
lines will not contribute. (d) Scaling the average angular velocity
according to Eq. (4), all results fall on a single curve. The angular
velocity in all subfigures is normalized byΩ0 ¼ Ωðt ¼ 0Þ for 200
rotors.

FIG. 4. Thermal effect on the global (purple) and local (black)
bond order parameters in a system of 200 (crosses) and 400
(circles) particles. Results are given for an average over nine
random initial configurations. Snapshots of the system at three
different temperatures, at the same time, are shown, along with
their corresponding structure factors.
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system to explore phase space, but unlike temperature,
the two conserved quantities, the Hamiltonian H and the
second moment of the distribution μ2, restrict the domain of
accessible states. The rotational system is thus self-con-
fining, whereas with temperature, an initial configuration
will spread to infinity as

ffiffi
t

p
.
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