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Suspensions of spherical active particles often show microphase separation. At a continuum level,
coupling their scalar density to fluid flow, there are two distinct explanations. Each involves an effective
interfacial tension: the first mechanical (causing flow) and the second diffusive (causing Ostwald ripening).
Here we show how the negative mechanical tension of contractile swimmers creates, via a self-shearing
instability, a steady-state life cycle of droplet growth interrupted by division whose scaling behavior we
predict. When the diffusive tension is also negative, this is replaced by an arrested regime (mechanistically
distinct, but with similar scaling) where division of small droplets is prevented by reverse Ostwald ripening.
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Active matter continuously dissipates energy locally to
perform mechanical work. In consequence, the dynamical
equations of coarse-grained variables, such as particle
density, break time-reversal symmetry. Examples include
suspensions of spherical autophoretic colloids, which self-
propel due to self-generated chemical gradients at their
surfaces [1]. Experiments on several such suspensions
have observed activity-induced phase separation that
arrests at a mesoscopic scale [2–5]. A generic under-
standing of such nonequilibrium microphase separations
can be sought at the level of continuum equations for a
diffusive scalar concentration field, coupled to incompress-
ible fluid flow. Such an approach is complementary to more
detailed mechanistic modeling, in which particle motion
and/or chemical fields are modeled explicitly [6–10]. By
sacrificing detail, the resulting “active field theory” allows
maximal transfer of ideas and methods from equilibrium
statistical mechanics. Each distinct mode of activity can be
modeled in a minimal fashion, allowing the competition
between them to be studied. This knowledge base can
inform the design of novel functional materials and devices
with tunable properties [11].
Bulk active phase separation can arise through attrac-

tive interactions, as in the passive case [12], or, even for
repulsive interactions, be motility induced [13,14]. At the
continuum level, when there is no orientational order in
bulk, the only order parameter required for the particles is
their scalar concentration ϕðr; tÞ. For “wet” systems, with
a momentum-conserving solvent rather than a frictional
substrate, this is coupled to a fluid velocity field vðr; tÞ [15].
Operationally, the field theory of active scalar phase
separation starts from the long-studied passive case, whose
stochastic equations of motion are constructed phenom-
enologically, respecting symmetries and conservation laws,
truncated at some consistent order in the fields and their
gradients [12]. If ϕ is measured relative to the critical point

for phase separation, this gives to leading order a sym-
metric free energy functional F ½ϕ� ¼ F ½−ϕ�. The outcome
is model B (dry) or model H (wet) [12,16].
To make these theories active, we add a small number of

leading-order terms, each of which breaks time-reversal
symmetry via a distinct channel. The first adds to the
chemical potential δF=δϕ a piece that is not the derivative
of any free energy functional F [this is the λ term in Eq. (2)
below]. The deterministic diffusive current then breaks
detailed balance but remains curl-free. This channel is
known to alter phase boundaries, but cannot arrest phase
separation [17]. A second channel [the ζ term in Eq. (2)
below] enters at the same order, but in the diffusive current
directly. This can arrest phase separation, by creating an
effectively negative interfacial tension in the diffusive
sector [18], throwing the process of Ostwald ripening,
whereby large droplets grow at the expense of small ones,
into reverse. These two channels are, for dry systems,
captured in active model Bþ [18].
The third active channel, present for wet systems only, is

the mechanical stress arising from self-propulsion. This is a
bulk stress in systems with orientational order (where it
leads to bacterial turbulence [15]), but for a scalar it is
quadratic in ∇ϕ [the κ̃ − κ term in Eq. (3) below], just like
the passive thermodynamic stress for model H [19]. It
likewise drives fluid motion via interfacial curvature.
So far, the resulting “active model H” has been explored

only in the absence of the other two active channels,
without noise, and for systems at the critical density, ϕ0 ≡
hϕi ¼ 0 [20]. Under these conditions, activity can arrest
separation, giving a dynamically fluctuating bicontinuous
state. The effect of active stresses on droplet states, as might
describe the cluster phases seen experimentally [1–4],
remains unclear. Notably though, in passive systems, the
interfacial stress rapidly becomes unimportant on moving
away from bicontinuity, since well-separated droplets
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recover spherical symmetry which precludes incompress-
ible fluid flow. Wet and dry dilute passive droplets then
behave similarly [16].
In this Letter we first extend the study of active model H,

with noise, to off-critical quenches (ϕ0 ≠ 0), where drop-
lets or bubbles arise, and there address the competition
between mechanical (κ̃) and diffusive (λ, ζ) activity
channels. We find that, contrary to the passive case, the
mechanical stress plays a crucial role in droplet (or bubble)
evolution; when sufficiently contractile, it can halt phase
separation, causing large droplets to split in smaller ones.
This balances the diffusive droplet growth due to Ostwald
ripening, giving a steady state with a distinctive droplet life
cycle. This represents “interrupted” rather than “arrested”
phase separation, because the steady state is highly dyna-
mic, and continues unchanged after all noise is switched
off. This contrasts with the microphase separation that
results from reverse Ostwald ripening [18], where switch-
ing off noise leads to a fully arrested, static assembly of
monodisperse droplets.
Crucially, the droplet life cycle just described for the case

of hydrodynamic interruption requires splitting to be bal-
anced by forward Ostwald ripening, which sustains a
stationary droplet number. In contrast, we find that when
the mechanical and diffusive activity both favor microphase
separation, the final steady state is arrested, not interrupted.
Despite this, the final droplet size depends on the active
stress parameter κ̃, instead of being fixed by either the noise
level or the initial condition, as happens for the dry case of
active model Bþ [18]. Our work thus exposes a subtle
interplay between different channels in the physics of active
microphase separation.
Active scalar field theory.—Our starting point is the

diffusive dynamics of a conserved scalar field ϕðr; tÞ in a
momentum-conserving fluid of velocity vðr; tÞ:

_ϕþ ∇ · J þ v · ∇ϕ ¼ 0: ð1Þ

Here, J is the current density of ϕ, which contains equili-
brium, active, and stochastic contributions. Keeping active
terms to order Oðϕ2;∇3Þ in Eq. (1), J obeys [17,18,20]

J ¼ M½−∇μþ ζð∇2ϕÞ∇ϕ� þ
ffiffiffiffiffiffiffiffiffiffiffi
2DM

p
Λ; ð2aÞ

μ ¼ μE þ μλ; μE ¼ δF
δϕ

; μλ ¼ λj∇ϕj2: ð2bÞ

Here M is a mobility, assumed constant (we set M ¼ 1 in
what follows); Λ is a zero-mean, unit-variance Gaussian
white noise, and D is a noise temperature [21]. The
equilibrium and nonequilibrium parts of the chemical
potential for ϕ are denoted by μE and μλ, while F is
the Landau-Ginzburg free energy functional: F ½ϕ� ¼R ½ða=2Þϕ2 þ ðb=4Þϕ4 þ ðκ=2Þð∇ϕÞ2�dr, which gives

bulk phase separation for a < 0, with b, κ > 0 for
stability [19,23].
The terms in ζ and λ in Eq. (2) break time-reversal

symmetry at Oðϕ2;∇4Þ in Eq. (1). These terms also break
the ϕ → −ϕ symmetry of the passive limit; however, the
full system of equations remains invariant under
ðϕ; λ; ζÞ → −ðϕ; λ; ζÞ. This means that all statements made
below about droplets also apply to the phase-inverted case
of bubbles, so long as λ and ζ are also changed in sign.
Notably, the reverse Ostwald process stabilizes only drop-
lets for ζ < 0 and only bubbles for ζ > 0 [18].
The fluid flow, in the limit of low Reynolds number

(as applicable to microswimmers), is obtained from the
solution of the Stokes equation: ∇ · σ ¼ −f , where f ¼
∇ · ðΣA þ ΣEÞ is the force density on the fluid, σ ¼ −pI þ
η½∇vþ ð∇vÞT � is the Cauchy fluid stress, η is viscosity,
I is the identity tensor, and p is the pressure field that
contains all isotropic terms and ensures incompressibility
(∇ · v ¼ 0) [24]. We neglect noise in these flow equations
since this would involve the thermal temperature T which is
vastly smaller than D for active swimmers.
There exists a standard procedure [25] to derive the

deviatoric stress ΣE in equilibrium systems using the free
energy F. This stress, retaining all isotropic terms, satisfies
∇ · ΣE ¼ −ϕ∇μE, which is the thermodynamic force
density on the fluid due to gradients of the concentration
field ϕ [19]. The deviatoric stresses ΣE and ΣA are then, in
d dimensions, given to the required order as

ΣE ¼ −κS; ΣA ¼ −ðκ̃ − κÞS; ð3Þ

where S≡ ð∇ϕÞð∇ϕÞ − ð1=dÞj∇ϕj2I. The mechanical
stress ΣA þ ΣE ¼ −κ̃S is not derived from a free energy
and breaks detailed balance in general. Its overall coef-
ficient κ̃ can be either positive (for extensile micro-
swimmers) or negative (for sufficiently contractile ones)
[20], unlike equilibrium systems where ΣA ¼ 0.
Equations (1)–(3) define our active model H for the

diffusive dynamics of a conserved order parameter with
momentum conservation. The numerical method we use to
integrate these equations is described in Ref. [26]. Having
neglected inertia, they reduce to an effective dynamics for ϕ
alone, which reads (with M ¼ 1)

_ϕ ¼ ∇2μeff −∇ϕðrÞ ·
Z

Gðr − r0Þ · f ðr0Þdr0 −∇ · JΛ: ð4Þ

Here GðrÞ is the Oseen tensor, JΛ ¼ ffiffiffiffiffiffiffi
2D

p
Λ, and μeff ¼

μE þ μλ þ μζ an effective chemical potential. This has a
part μζ, constructed via Helmholtz decomposition of the
active current term in Eq. (2), as ζð∇2ϕÞ∇ϕ ¼ −∇μζ þ
∇ × A. The ∇ × A term is divergenceless, and so cannot
contribute to _ϕ in Eq. (4), allowing it to be ignored [18].
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Three tensions.—At large scales, the dynamics of an
interface between phases is controlled by its curvature and
its interfacial tension. Without activity, there is only one
such tension, γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8κa3=9b2

p
, governing both diffusive

and mechanical sectors; curvature then drives diffusive
currents and/or fluid flow via Laplace pressure [16,19].
With activity, two further tensions enter [18,20]. First,

the chemical potential term μζ is in general nonlocal, and
acquires a step discontinuity across a curved interface
that is canceled by a counterstep in μE. The result is a
discontinuity in ϕ different from the equilibrium one. This
is captured by a “pseudotension” γϕ that replaces γ0 when
calculating diffusive fluxes between droplets, and becomes
negative for sufficiently negative ζ, λ. Crucially, negative γϕ
does not make interfaces locally unstable; spherical drop-
lets stay spherical. Rather, its effect is to drive the system
towards states of globally uniform curvature (monodisperse
drops) whereas positive tension promotes curvature dif-
ferences by shrinking small droplets and growing large
ones (the Ostwald process) [18].
The third tension arises from the active stress at

interfaces, where swimmers align parallel or antiparallel
to the surface normal. In either case, contractile swimmers
pull fluid inward along the normal direction and expel it in
the interfacial plane, causing stretching, whereas extensile
swimmers do the opposite. The resulting mechanical ten-
sion is γv ¼ κ̃γ0=κ, which is negative for sufficient con-
tractility; this is known to interrupt phase separation for
bicontinuous regimes [20]. We find next that it also does so
for droplets, by destabilizing interfaces locally (in contrast
with negative γϕ; see above).
Self-shearing instability.—For simplicity we first con-

sider active mechanical stress alone, setting λ ¼ ζ ¼ 0
so that γϕ ¼ γ0 > 0 while κ̃ ¼ −0.1, giving negative γv.
In Fig. 1, we show the dynamic interruption of phase

separation in two dimensions and the resulting steady state
droplet size R̄. The negative mechanical tension, arising
from contractile stress, results in a self-shearing of the
droplets, causing large ones to split. This is balanced by
Ostwald ripening: small droplets evaporate while large ones
grow until they in turn become unstable. The result is a
dynamical steady state of droplet splitting followed, on
average, by diffusive growth of one offspring and dis-
appearance of the other(s). Movies in the Supplemental
Material show this dynamics clearly [26]. In Fig. 2, we
show the dynamics of an individual droplet for nega-
tive γv, which exhibits the flow-induced droplet breakup
mechanism.
Scaling of droplet size.—In Fig. 1(c), we show that the

droplet size obeys R̄ ∼ jγv=γϕj−0.52 (best fit exponent),
where, in these simulations, γϕ ¼ γ0 > 0. We now argue
on simple grounds for a negative one-half exponent
whenever γv < 0 and γϕ > 0. From the mechanical tension
γv and fluid parameters we can construct just one quantity
with the dimensions of velocity: Vv ¼ γv=η. This is the
familiar coarsening rate _L for systems with bicontinuous
domains of size L, in the so-called “viscous hydrodynamic”
regime where curvature drives fluid motion and diffusive

FIG. 1. The self-shearing instability interrupts phase ordering in two dimensions with contractile active stress. Time sequence in
(a) has global density ϕ0 ¼ −0.6 (giving bubbles), while sequence (b) has ϕ0 ¼ 0.4 giving droplets. (Sequences for ϕ0 ¼ þ0.6, −0.4
can be generated by inverting the color scale.) Both sequences have κ̃ ¼ −0.1. Panel (c) shows the mean steady state droplet size R̄
[defined as ðAd=4πÞ1=2 with Ad the droplet area] on variation of κ̃. The best linear fit on log-log gives exponent −0.52, in good agreement
with the scaling argument of Eq. (5). System size 2562; for movies and simulation details see Ref. [26].

FIG. 2. Snapshots mapping the order parameter and flow
streamlines, starting from a deformed droplet for a sufficiently
contractile active stress (self-shearing instability).
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fluxes are negligible [25]. For a droplet of size R̄ with
negative γv, one thus expects the time between scission
events to scale as τ ¼ −R̄=Vv. The Ostwald process gives
another speed, which is the rate of change of the mean

droplet size VϕðR̄Þ ¼ _̄R ∝ Mγϕ=ϕ2
BR̄

2, where ϕB is the
binodal density [18,19]. Balancing a positive Ostwald
speed VϕðR̄Þ with a negative hydrodynamic speed Vv gives
the promised scaling law

R̄ ∝
�
−γvϕ2

B

ηMγϕ

�−1=2
∼
���� γvγϕ

����
−1=2

: ð5Þ

The predicted one-half exponent is in excellent agree-
ment with Fig. 1(c). Unlike the simulations, our scaling
argument does not include noise, which appears inessential
to the steady state, at least in the parameter range inves-
tigated here. We checked this by explicitly switching off
noise once the steady state is achieved and found that it
continues to exist, with essentially the same droplet life
cycle and mean size. While noise is needed initially to start
the phase separation, once enough droplets are present the
contractile active stress can maintain the dynamics of
scission and coarsening indefinitely. In addition to splitting
and ripening, we observe splitting-induced coalescence
mediated by fluid flow. This resembles the coalescence-
induced coalescence mechanism seen for semidilute pas-
sive droplets in two dimensions [33]. However, this cannot
change the scaling because its physics is also governed
by Vϕ.
Competing activity channels.—We next consider the full

dynamics of Eq. (4), where both the active tensions can
change sign, and enumerate the possible steady states. The
resulting phase diagram, in the ðγϕ; γvÞ plane, is shown in
Figs. 3(a)–3(b). In panel (a), we show time evolution of two
bubbles of unequal sizes and their final steady state. The
two bubbles disproportionate if both tensions are positive;
the corresponding outcome in the many-droplet system
[panel (b)] is forward Ostwald dynamics. The three activity
parameters κ̃, λ, ζ in this region serve merely to renormalize
the passive behavior. In contrast, when γv > 0 and γϕ < 0,
we recover the result of Ref. [18], with reverse Ostwald
ripening arresting phase separation of droplets [see panel
(c)(ii)]. As in the forward case, the reverse Ostwald regime
entails little or no fluid motion, so the results given in
Ref. [18] apply even for the wet systems studied here, with
physics controlled by γϕ and no role for γv. Third, the case
γv < 0 and γϕ > 0 is governed by our interrupted steady
state with the splitting and coarsening life cycle described
above; here λ and ζ enter only via γϕ. Because the steady
state balances mechanical and diffusive processes, both
tensions enter the mean droplet size via Eq. (5).
In the final regime, both tensions are negative. Here,

because negative γϕ reverses Ostwald ripening, the balance
of splitting and ripening embodied in Eq. (5) cannot be

maintained. Were splitting to continue, the number of
droplets would increase forever, with the reverse
Ostwald process driving these towards uniformity in size
but not allowing the number to reduce by evaporation.
Accordingly, for negative γϕ, no matter how small its
magnitude, the steady state must consist of almost static
droplets with no splitting, and this is indeed what we
observe.
Despite this complete change of mechanism, we now

argue that the steady-state droplet size is still governed by
R̄ ∼ jγvj−1=2 as in Eq. (5). This is because the reverse
Ostwald process drives the system towards uniformity of
curvature which, for a single droplet, directly opposes the
self-shearing instability. Indeed, for an amplitude A ∼ ϵR
of the lowest deformation mode in a droplet of radius R,
one expects on dimensional grounds that, up to prefactors,
_A ∼ ϵ½Vv þ VϕðRÞ]. Here the first term is the self-shearing
instability and the second is stabilizing for negative γϕ.
Stability is restored for droplets smaller than R̄ given by
Eq. (5), which thus again gives the scaling of steady-state
droplet size, albeit by a completely different mechanism of
arrest rather than interruption. This scaling is consistent
with simulations, see Fig. 3(d).
All the above arguments apply equally to bubbles as to

droplets via invariance under ðϕ; λ; ζÞ → −ðϕ; λ; ζÞ.
Conclusion.—In wet active systems containing droplets

or bubbles, microphase separation can replace bulk phase

FIG. 3. Phases of active model H in the plane ðγϕ; γvÞ. Panel
(a) shows the dynamics of two unequal size bubbles in four
regions distinguished by the signs of γϕ and γv, as labeled in (b).
The markers denote simulation points. Snapshots of steady states
are shown in panel (c)(i–ii) for the regions in panel (b)(i–ii). Panel
(d) shows that R̄ ∼ jγvj−1=2 (5) continues to hold (best fit exponent
is −0.46) in the region (b)(iii). See Fig. 1 for steady states of (b)
(iv). System size is 1282.
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separation by three distinct mechanisms. These are reverse
Ostwald ripening (also present in the dry limit, and caused
by negative pseudotension γϕ), hydrodynamic interruption
by self-shearing (caused by negative mechanical tension
γv), and a peculiar combination of the two when both of
tensions are negative. In contrast to reverse Ostwald
ripening, where the size of droplets or bubbles in the
arrested steady state is selected by noise (or, in its absence,
initial conditions) [18], our self-shearing mechanism con-
tinues to operate even if the noise is switched off after the
steady state is reached. The droplet size is then selected by a
balance between droplet splitting and forward Ostwald
ripening. This balance is unsustainable when γϕ is also
negative, and so is replaced by a new one whereby the
reverse Ostwald process suppresses the self-shearing insta-
bility for small droplets, leading to static arrest rather than
dynamic interruption.
These results point to a subtle interplay of causes behind

the phenomena of active microphase separation. We con-
tend that they cannot be understood without first clearly
enumerating the relevant activity channels, and then study-
ing their interaction; this is best done within the minimalist
framework of an active field theory as done here. A
possible generalization of Eq. (4) would allow for boundary
conditions imposed on the fluid flow via a nearby wall;
these are known to play a crucial role in active phase
separation [34–36] but with no clear understanding, so far,
of the microphase-separated case.
Our findings should complement more detailed work

that could connect our activity channels to microscopic
interactions [6–10]. They may also be relevant to con-
tinuum models of multiple species (some nonconserved
[37]) that were used recently to study microphase separa-
tions used by cells to create cytoplasmic and nucleoplasmic
organization [38,39]. Fluid motion is often neglected in
such studies but we have shown that it brings new features
(a similar case of elasticity in polymer networks has been
shown to arrest phase separation [40]), suggesting exciting
directions for future work.
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