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For soft matter to form quasicrystals an important ingredient is to have two characteristic length scales in
the interparticle interactions. To be more precise, for stable quasicrystals, periodic modulations of the local
density distribution with two particular wave numbers should be favored, and the ratio of these wave
numbers should be close to certain special values. So, for simple models, the answer to the title question is
that only these two ingredients are needed. However, for more realistic models, where in principle all wave
numbers can be involved, other wave numbers are also important, specifically those of the second and
higher reciprocal lattice vectors. We identify features in the particle pair interaction potentials that can
suppress or encourage density modes with wave numbers associated with one of the regular crystalline
orderings that compete with quasicrystals, enabling either the enhancement or suppression of quasicrystals
in a generic class of systems.
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Matter does not normally self-organize into quasicrystals
(QCs). Regular crystalline packings are much more
common in nature and some specific ingredients are
required for QC formation, which is why the first QCs
were not identified until 1982, in certain metallic alloys [1].
Subsequently, the seminal work in Refs. [2,3] showed that
normally a crucial element in QC formation, at least in soft
matter, is the presence of two prominent wave numbers in
the linear response behavior to periodic modulations of the
particle density distribution. This is equivalent to having
two prominent peaks in the static structure factor or in the
dispersion relation [4,5]. In soft matter systems, the
effective interactions between molecules and aggregations
of molecules (generically referred to here as particles) can
be tuned to exhibit the two specific required length scales
and thus form QCs. Such systems include block copoly-
mers and dendrimers [6–15], certain anisotropic particles
[16–18], nanoparticles [19,20] and mesoporous silica [21].
Some of our understanding of how and why QCs can

form has come from studies of particle-based computer
simulation models—see, for example, Refs. [22–26].
Another source of important insights has been continuum
theories for the density distribution. The earliest of these
consist of generalized Landau-type order-parameter theo-
ries [2,3,27–34]. More recently, classical density functional
theory (DFT) [35–37] in conjunction with its dynamical
extension DDFT [38–40] has been utilized. DFT is a
statistical mechanical theory for the distribution of the
average particle number density that takes as input the
particle pair interaction potentials, and so bridges between

particle-based and Landau-type continuum theory
approaches. The DFT results for QC forming systems
[4,5,41–43] clearly demonstrate how the crucial pair of
prominent wave numbers are connected to the length and
energy scales present in the pair potentials.
While the ratio between the two length scales is

important, it can be seen that this is not the whole story
if one compares the phase behavior of systems with the pair
potential of Ref. [42] (phase diagrams are calculated below)
with the phase behavior of the core-shoulder soft potential
system of Refs. [4,5]. We refer to these two as the BEL and
ARK models, respectively. In the ARK model, QCs are
never the thermodynamic equilibrium phase, i.e., the state
which is the global minimum of the free energy, and they
only form in this system for subtle dynamical reasons [4,5].
In contrast, QCs can be the thermodynamic equilibrium for
the BEL model. This is despite the fact that the parameters
in both the BEL and ARK models are chosen so that both
systems have identical growth rates ω at the two critical
wave numbers k1 and kq, so that density fluctuations with
these two wave numbers are promoted equally in the two
different systems. This raises the important question: what
feature(s) do BEL-type systems have that enables QCs to
be thermodynamically stable, that ARK-type systems do
not have? Or, relating to the title question, why is it not
enough to consider just these two wave numbers?
The answer to this question is that one must also consider

the properties of the dispersion relation ωðkÞ at certain
other wave numbers ≠ k1, kq For example, in two dimen-
sions (2D), hexagonal crystals are built up from six modes
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∼ expðik · rÞ at 60° to one another with equal (single) wave
number k ¼ jkj. They are stabilized by nonlinear coupling
between these modes and modes with wave numbers such
as

ffiffiffi

3
p

k, 2k, and
ffiffiffi

7
p

k, which are generated by vector sums
of the original six. The resulting wave vectors are the
hexagonal reciprocal lattice vectors (RLVs). More gener-
ally, with two wave numbers, more complex structures can
form and involve larger sets of RLVs. The properties of
modes with these vectors, in particular their decay rates ω,
must be known in order to predict which structures have the
lowest free energy.
We illustrate this fundamental understanding by deve-

loping a class of model systems with pair potentials which
have identical growth rates at k1 and kq, but are different in
a controllable manner at the RLV wave numbers. By
changing the dispersion relation at these wave numbers,
we are able either to enhance or suppress the stability
of QCs.
While it is not a priori obvious that soft matter freezing

might be related to Faraday waves, it turns out that a
surprisingly large amount of the mathematics of Faraday
wave pattern formation can be applied to the soft matter
systems of interest here, including the understanding of QC
stability [2,44–51]. Faraday waves are standing waves on
the surface of viscous liquid layers that arise when the
liquid is subjected to strong enough vertical vibrations [52].
In some circumstances, Faraday wave experiments exhibit
spatially complex patterns such as 12-fold quasipatterns at
parameters where two length scales in the correct ratio are
excited or weakly damped [44,51,53–58]. A major con-
clusion from this body of work is that understanding
spatially complex patterns in Faraday waves requires the
consideration of not only the primary waves in the pattern
but also the contributions from the RLV waves. These RLV
contributions are strongly influenced by the damping rate at
each wave number. We demonstrate here that analogous
mechanisms operate in the coupling between soft matter
density modulations at different wave numbers, helping to
identify features in the pair potentials that can be tuned to
control the extent to which the QCs are stabilized.
For a system of interacting particles free of any external

forces, the equilibrium density distribution ρðrÞ is given by
the minimum of the grand potential functional [35–37]

Ω½ρ� ¼ kBT
Z

ρðlnðΛdρÞ−1ÞdrþF ex½ρ�−μ

Z

ρdr; ð1Þ

where Λ is the thermal de Broglie wavelength, kB is
Boltzmann’s constant, T is the temperature, and μ is the
chemical potential. In two dimensions, we have d ¼ 2 and
r ¼ ðx; yÞ. We illustrate the main ideas of this Letter in two
dimensions, but they equally apply in three dimensions.
The first term in Eq. (1) is the entropic ideal-gas contri-
bution to the Helmholtz free energy, while the second
term is the excess contribution, which arises from the

interactions between particles. The random phase approxi-
mation (RPA) [35,59]

F ex½ρ� ¼
1

2

Z Z

ρðrÞVðjr − r0jÞρðr0Þdrdr0; ð2Þ

turns out to be remarkably accurate for soft particles
interacting pairwise via potentials VðrÞ, which are finite
for all values of the separation distance r between the
particles [59] and so is used here. Equilibrium density
profiles minimize Eq. (1) and so satisfy the Euler-Lagrange
equation ðδΩ=δρÞ ¼ 0. In the liquid state, the density is
uniform, while in the crystal and QC phases the profiles are
nonuniform, typically with sharp peaks.
An understanding of how the thermodynamic equilib-

rium structures are selected comes from rewriting Eq. (2) in
Fourier space:

F ex ¼
1

2ð2πÞd
Z

V̂ðkÞjρ̂ðkÞj2dk; ð3Þ

where ρ̂ðkÞ ¼ R

e−ik·rρðrÞdr is the Fourier transform of the
density profile ρðrÞ and V̂ðkÞ is similarly defined as the
Fourier transform of VðrÞ. We observe that density modes
ρ̂ðkÞ with wave numbers at the minima of V̂ðkÞ minimize
the above integral, whereas those with wave numbers away
from these values make a larger contribution to F ex and so
are favored less. In other words, V̂ðkÞ quantifies the
energetic penalty for having modes with wave number k
in the density profile. Of course, the entropic ideal-gas term
in Eq. (1) also makes an important contribution. This is
particularly true near to melting, which is where the soft
QCs discussed here exist.
Assuming that the particles have overdamped Brownian

equations of motion, the nonequilibrium dynamics of the
density distribution ρðr; tÞ is given by DDFT [38–40]

∂ρ
∂t ¼ Γ∇ ·

�

ρ∇ δΩ
δρ

�

; ð4Þ

where t is time and Γ is a mobility coefficient. The stability
of a uniform liquid state of density ρ0 to small amplitude
perturbations ∼ expðik · rþ ωtÞ can be found by a stan-
dard normal mode approach [4,5,39,60], which gives the
linear dispersion relation for the growth (or decay) rate ω
associated with modes of wave number k,

ωðkÞ ¼ −Dk2½1þ ρ0βV̂ðkÞ�; ð5Þ

where D ¼ ΓkBT is the diffusion coefficient and β ¼
ðkBTÞ−1. In Eq. (5) the first term (−Dk2) stems from the
ideal-gas contribution and is entropic in origin, while the
second term [−Dρ0βk2V̂ðkÞ] is the energetic contribution.
The liquid is dynamically stable when ωðkÞ < 0 for all
k > 0, but becomes unstable at critical wave number(s)
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k ¼ kc if ωðkcÞ ¼ 0 at a local maximum. This can only
happen if V̂ðkÞ < 0 for some range of k [61], and then the
instability occurs through increasing ρ0 or decreasing T.
For the class of two length scale systems here, there are two
maxima in ωðkÞ, at k1 and kq. The ratio between these is
important for determining the structures formed, but as we
now show, other wave numbers in the reciprocal lattice are
important too.
We demonstrate this by modifying a pair potential VðrÞ

in such a way that V̂ðkÞ remains fixed at k1 and kq but
changes everywhere else, strongly affecting which struc-
tures minimize Eq. (1) and so are the thermodynamic
equilibria. We use the form of the BEL pair potential [42]:

VðrÞ ¼ εe−
1
2
σ2r2ðC0 þ C2r2 þ C4r4 þ C6r6 þ C8r8Þ: ð6Þ

Throughout we set βϵ ¼ 10 and the remaining parameters
fσ; C0; C2; C4; C6; C8g have values chosen so that the
dispersion relation has two maxima at k1 ¼ 1 and kq ¼
q ¼ 2 cosðπ=12Þ ≈ 1.93 [minima in V̂ðkÞ], but varies
significantly for other k values. We choose three sets of
parameter values, given in Table I, in order to enhance or
reduce the energetic cost at other RLV wave numbers. The
middle set, with σ ¼ 0.771, are the values originally used in
Ref. [42] and the other two sets are for a larger and smaller
value of σ. The resulting dispersion relations, Fourier
transforms of the pair potentials V̂ðkÞ and the potentials
VðrÞ in real space are displayed in Fig. 1.
From Fig. 1(b), we see that decreasing σ results in V̂ðkÞ

being more damped at larger k values and thus leads to a
lower energetic penalty [see Eq. (3)] at the hexagonal RLV
wave numbers of k1 and kq, i.e., at the wave numbers

ffiffiffi

3
p

k1,

2k1,
ffiffiffi

3
p

kq, and 2kq, which are marked as vertical gray lines
in Figs. 1(a) and 1(b). In contrast, increasing σ leads to a
higher penalty at the hexagonal RLV wave numbers.
There are corresponding changes to the decay rates ωðkÞ
[Fig. 1(a)]. The important QC RLV wave numbers are
k1=q,

ffiffiffi

2
p

k1,
ffiffiffi

2
p

kq, and qkq (dashed gray lines), and there
are of course also changes in the value of ω at these wave
numbers as σ is varied. However, on decreasing σ the
biggest fractional change in ω occurs at wave number
ffiffiffi

3
p

kq, where jωj decreases by 90% going from σ ¼ 0.794

to σ ¼ 0.671, while the change at
ffiffiffi

2
p

kq is 88% and at all

other key wave numbers the fractional change is signifi-
cantly smaller. Therefore, hexagons with wave number kq
(q-hex) should be stabilized more than QCs by the decrease
in σ, which we confirm below by calculating free energies
and phase diagrams—see Figs. 2 and 3.
We also display in Fig. 1 the ARK model pair potential

VðrÞ ¼ ϵðe−ðr=RcÞ8 þ ae−ðr=RsÞ8Þ and corresponding V̂ðkÞ
and ωðkÞ. We choose the parameter values fϵ; a; Rc; Rsg so
that the system is identical to that studied in Refs. [4,5], i.e.,
with Rs ¼ 1.855Rc and a ¼ 1.067, where the phase dia-
gram was also determined. Here we rescale the core and
shoulder radii Rc and Rs by choosing Rc ¼ 3.14, so that the
critical wave numbers are at k1 ¼ 1 and kq ¼ q as in the
three chosen BEL potentials (6). This rescaling does not in
any way change the phase behavior.
Figure 1(c) illustrates how varying the parameters

changes the architecture of the potentials in physical space.
Increasing σ (together with changes to the other parame-
ters) leads to oscillations in the BEL potential becoming
accentuated, to the extent that the first minimum at r ≈ 1.3
comes close to zero in the σ ¼ 0.794 case. On the other
hand, the opposite changes smooth the oscillations, to the

FIG. 1. In (a) the dispersion relation ωðkÞ (5) for three different
BEL and the ARK potentials (the inset shows a magnification) at
the state point where they are simultaneously marginally stable at
k1 and kq, which are marked with vertical black lines. Some other
important RLV wave numbers for hexagons are marked as
vertical gray lines and for QCs as dashed gray lines. In (b) we
display the corresponding pair potentials in Fourier space and in
(c) the pair potentials in real space with the two key length scales
marked. The σ values for the three BEL systems are given in the
key and the remaining parameters are given in Table I.

TABLE I. The three sets of parameter values used in the BEL
pair potential (6). With these values and ρ0 ¼ 1.25 the systems
are simultaneously marginally stable to modes with k1 and kq.

σ C0 C2 C4 C6 C8

0.794 1.350 1.794 0.722 4 0.083 68 0.003 117
0.771 1.000 1.095 0.439 7 0.049 27 0.001 831
0.671 0.394 9 0.044 85 0.036 89 0.003 342 0.000 144 9
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point where it becomes hard, in real space, to discern more
than one length scale. The BEL potential with σ ¼ 0.671
bears some resemblance to the ARK potential.
In Fig. 2 we display equilibrium phase diagrams,

computed by varying βμ and C4, and minimizing the
grand potential (1) via Picard iteration [4,62]. Varying just
C4 changes the BEL potential in a manner most akin to
varying a in the ARK potential [43]. The top three panels
are for the three chosen BEL potentials, and show the
equilibrium phase as a function of average density ρ̄ and

C4 − C�
4. Here, C

�
4 is the value of C4 for simultaneous

marginal stability, as given in Table I. Varying C4 away
from C�

4 means that the maxima in ωðkÞ are no longer at the
same value, shifting the preference to one or the other
length scale [43]. Typical examples of the density profiles
obtained are displayed along the bottom of Fig. 2.
Figure 3 shows examples of the grand potential per unit

area A (relative to the value for the liquid Ω0=A) as a
function of C4 at constant βμ ¼ 224. In these plots, the
thermodynamic equilibrium phase is that with the lowest
value of Ω for the given value of C4. The crossing points of
the different branches in each case give the phase bounda-
ries displayed in Fig. 2.
The size of the region where QCs are stable in each phase

diagram in Fig. 2 comes from the changes to the potentials
shown in Fig. 1. Case (a) with the larger σ ¼ 0.794 has QCs
as the thermodynamic equilibrium over a much larger
region of the phase diagram than (c), with the smaller
σ ¼ 0.671, where they are almost completely suppressed.
In the ARK phase diagram displayed in Refs. [4,5], QCs
are completely absent. The reason for these significant
changes is that decreasing σ and thus making ωðkÞ less
negative away from k1 and kq [see Fig. 1(a)] benefits all
phases that incorporate other wave numbers, but benefits
most the q-hex crystals, as discussed above. In common
with Faraday waves, wave numbers that are less strongly
damped play a more prominent role in selecting the final
state [63]. Of course, determining the thermodynamic
equilibrium involves a nonlinear balance between contri-
butions from all RLV wave numbers, but our results in

FIG. 2. Phase diagrams for the BEL model in the average
density ρ̄ versus the C4 − C�

4 plane. The critical value of C4 ¼ C�
4

for three different values of σ is given in Table I, as are the other
pair potential parameter values, which remain fixed. There are
four equilibrium phases: a uniform liquid phase, a large lattice
spacing hexagonal phase (1-hex), a smaller lattice spacing
hexagonal phase (q-hex) and QCs. For σ ¼ 0.771, examples
of the observed nonuniform phases are displayed in (d)–(f). We
plot ln ρðrÞ; the color bar indicates the range of values. These
three are calculated at the state points marked with a × symbol in
the phase diagram (b). The coexistence regions between the
different phases are rather narrow and within the widths of the
lines used. We also display the liquid linear stability threshold
lines (dashed lines). There are two, one corresponding to
instability at k1 and the other at kq. They intersect at the point
where both length scales are marginally stable, which occurs at
ρ̄ ¼ ρ0 ¼ 1.25 in all three systems.

-3 -2 -1 0 1
-0.3
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10-3
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0

FIG. 3. Grand potential for the 1-hex, q-hex, and QCs for
varying C4, for βμ ¼ 224 for the three different BEL systems.
The corresponding σ values are indicated.
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Figs. 2 and 3 are consistent with this intuition from Faraday
waves. That one can accurately anticipate the (nonlinear)
phase behavior from the linear response behavior ωðkÞ was
not a priori obvious and is an important result. But, this
may not be generally true if the approximation for F ex used
is more complex than in Eq. (2).
A simplification that is made in some other models

is to introduce a coefficient (the parameter c in
Refs. [28,29,34,64] or γ in Ref. [32]) which effectively
sends ωðkÞ → −∞ for all wave numbers k ≠ k1, kq as
c → ∞. This limit of perfect length scale selectivity makes
the resulting pair interaction potentials less physically
realizable. The present approach does not rely on this
simplification and is therefore more relevant to elucidating
QC formation in soft matter at finite temperatures.
To conclude, we return to the title question: As

Refs. [2,3] showed and subsequent work confirmed, two
wave numbers k1 and kq having a specific ratio are required
for quasicrystals to be stable, i.e., a local minimum of the
grand potential. However, what we have shown here is that
for QCs to be the thermodynamic equilibrium, one must
also consider the RLV wave numbers of all competing
crystal structures. Moreover, examining the value of the
dispersion relation ωðkÞ at these other RLV wave numbers
helps anticipate the outcome of the competition between
QCs and other crystal structures.
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