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We study experimentally and theoretically the thickness of the coating obtained by pulling out a rod from
a reservoir of yield-stress fluid. Opposite to Newtonian fluids, the coating thickness for a fluid of large
enough yield stress is determined solely by the flow inside the reservoir and not by the flow inside the
meniscus. The stress field inside the reservoir determines the thickness of the coating layer. The thickness is
observed to increase nonlinearly with the sizes of the rod and of the reservoir. We develop a theoretical
framework that describes this behavior and allows us to precisely predict the coating thickness.
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Dip coating is a coating technique in which an object is
immersed into a fluid reservoir and then pulled out. During
the withdrawal, a liquid film is entrained by viscous drag.
The dip-coating process is low cost, waste-free, and easy to
scale up [1]. Applications are found in many sectors
ranging from manufacturing to the food industry and
cosmetics [2–4]. Predicting the thickness of the entrained
film is of major interest, both from the industrial and
scientific perspectives. Since the seminal works by Landau
and Levich [5] and Derjaguin [6], the problem has received
continuing interest. In the case of Newtonian liquids, the
balance between viscosity and surface tension (capillary
number) determines the film thickness [7–9]. However, for
soft-jamming liquids with a finite yield stress such as
paints, gels, pastes, foams, and creams, a complete, self-
contained description remains elusive, despite its industrial
relevance.
In recent years, the dip coating problem with a yield-

stress fluid has been studied both experimentally [10–13]
and by numerical simulations [12,14,15]. Maillard et al.
have shown that for fluids with a high yield stress viscous
dissipation is sufficiently large for the capillary effects to be
negligible. In planar geometry, they observed that the
coating thickness is determined by a competition between
viscous drag and gravity in the meniscus [10–12]. In this
work, we revisit the problem by studying the axisymmetric
coating problem. We show that the coated thickness results
from the exact upward flux of the flowing fluid zone
created close to the rod only in the bath. For high yield
stress, the thickness is completely determined by the stress
field inside the bath and independent on the surface tension.
This regime has not been observed previously in planar
geometry. The curvature of the geometry is at its origin. It
modifies the stress field in the bath and limits the size of

the fluidized zone, canceling the role of the drainage.
We develop a semianalytic model that captures this picture
quantitatively.
The dip-coating experiments are performed in the

axisymmetric geometry, in which a rod is pulled out from
the center of a cylindrical container [Fig. 1(a)]. Cylindrical
containers of various radii r2 (13, 17, 21.5, and 33 mm) and
height 14 cm. As a model yield-stress fluid, we use
Carbopol microgels that have been extensively studied
[16–18]. During the preparation, the samples are sheared
gently during 2 h. The Carbopol powder is dissolved under
gentle stirring for 1 h in pure water, the aqueous Carbopol
980 solutions (0.08–0.5 wt%) are neutralized with a dilute
solution of NaOH and the samples are stirred gently for
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FIG. 1. (a) Schematic of the dip-coating experiment. A rod of
radius r1 is pulled out with velocity V from a liquid bath of radius
r2. (b) Typical thickness profile resulting from the dip coating.
The coating profile can be divided into regions I, II, and III
(see text).
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another 1 h. Bubbles are removed by ultracentrifugation.
The gels have a density of 103 kgm−3. These gels are
model yield-stress system: subjected to an up and down
shear rate sweep, they do not exhibit hysteresis. Their flow
curve, i.e., shear stress τ vs shear rate _γ, is well described by
a Herschel-Bulkley model for which τ ¼ τc þ k_γn with τc
the yield stress, k the consistency index, and n the shear-
thinning index (see Fig. S1 in the Supplemental Material
[19]) [11,20]. The dip-coating experiments are performed
with acrylic rods of radius r1 ¼ 2.5–10 mm, which are
vertically immersed over a length of 10 cm into the bath. To
minimize wall slip [21,22] and to ensure complete wetting
of the Carbopol gels on the acrylic rods, the rods are
sandblasted leading to a roughness of ∼10 μm and sub-
sequently treated by an oxygen-argon plasma (Diener Pico)
[23]. The internal stress of the gel in the container is preset
by a first immersion and retraction of the rod. The
immersion of the rod is performed at the same speed as
the retraction. The coating thickness is directly measured
using a profilometer (Keyence LJ-V7060K).
A typical thickness profile from a dip-coating experi-

ment is shown in Fig. 1(b). The coating profile can be
divided into three parts: In the top region (I), the coating
thickness builds up. In the bottom region (III), the thickness
increases as a result of the breakage of the meniscus when
the rod leaves the liquid bath. In the intermediate region
(II), the coating thickness is uniform, which is associated
with a steady flow (see discussion below). In this Letter, we
focus on region II and denote the constant thickness by h.
Its value is determined by averaging over 3–10 independent
measurements.
In Fig. 2 we show the experimental film thickness h for a

0.5% Carbopol solution in 1% aqueous PEG-12 dimethi-
cone in several configurations. Using the sessile-drop
technique, we measure a surface tension σ of 27 mNm−1
for a 1% PEG solution in water. We assume that the surface
tension of the Carbopol solution with 1% PEG has the same
value. The coating thickness increases with rod radius r1 as
well as with pull-out velocity V, see panels (a) and (b),
respectively. Strikingly, the gap width also has a profound
impact on the coating thickness. For instance, for a rod
of radius r1 ¼ 10 mm, the thickness h increases from
0.35� 0.01 mm for r2 − r1 ¼ 7 mm to 0.68� 0.03 mm
for r2 − r1 ¼ 23 mm. This result contrasts the behavior for
Newtonian liquids, for which the coating thickness is
independent on the bath size when the distance to the wall
exceeds 2 times the capillary length in the case of a plate
geometry [24]. The dependence on the bath size for a yield-
stress fluid implies that the coating does not only induce a
flow of a free surface under gravity, but that the coating
process is governed by the flow inside the bath.
To solve the dip-coating problem for a yield-stress fluid,

we must determine the fluid flow inside the bath. For a
laminar flow along the rod away from the meniscus and the
end of the rod, the only nonvanishing stress component is

the transverse stress τrz. In our experiments, inertial forces
are small compared to viscous forces (Reynolds number
< 0.1). Owing to the low value of the Reynolds number, the
flow is governed by Stokes’ equation,

−ρg −
∂P
∂z þ 1

r
∂rτrz
∂r ¼ 0; ð1Þ

with fluid density ρ, gravitational acceleration g,
pressure P, radial coordinate r, and vertical coordinate z.
By integration, a general solution for flow through con-
centric annuli is obtained:

τrzðrÞ
τc

¼ 1

λi − λo

�
r −

λiλo
r

�
: ð2Þ

To be determined are λi and λo, the locations of the inner
and outer yield surfaces, respectively, i.e., τrzðλiÞ ¼ −τc
and τrzðλoÞ ¼ τc. For elastoviscoplastic fluids, λi and λo
depend on the deformation history and converge after a
start-up time to their steady flow values [25]. In all our
experiments, the rod length is sufficiently long for a steady

0 2 4 6 8 10
0.2

0.3

0.4

0.5
(b)

(a)

0 10 20 30
0

0.2

0.4

0.6

0.8

FIG. 2. Comparison of the coating thickness between experi-
ments (data points) and the prediction of Eq. (6) (solid lines)
for a Carbopol solution in aqueous PEG-12 dimethicone.
The rheological properties are τc ¼ 54 Pa, k ¼ 29 Pa sn, and
n ¼ 0.35. Error bars denote the standard deviation. (a) Coating
thickness as a function of the distance between bath wall and rod
for different geometrical configurations. The rod radii are 2.5
(circles), 5 (squares), and 10 mm (triangles). The withdrawal
velocity is 3 mms−1. (b) Coating thickness as a function of
withdrawal velocities. The rod and the bath are of radius r1 ¼ 5
and r2 ¼ 17 mm, respectively.
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flow to be established, as evidenced from the constant
region in the coating profiles (region II in Fig. 1) and
measurements of the force between rod and reservoir
(Fig. S2 [19]). In this case, λi and λo do not depend upon
time and can be determined by assuming no-slip boundary
conditions, i.e., vzðr1Þ ¼ V > 0 and vzðr2Þ ¼ 0, and mass
conservation. The velocity boundary conditions impose

V þ
Z

r2

r1

_γðrÞdr ¼ 0; ð3Þ

with shear rate _γ ¼ ∂vz=∂r. Mass conservation imposes
that the retracted volume by the rod pull-out be balanced by
a downward flux of the liquid in the bath:

2π

Z
r2

r1

rvzðrÞdr ¼ −πr21V: ð4Þ

To obtain the bath flow, one must specify a rheological
model. Here, we employ the Herschel-Bulkley model for
which _γ ¼ 0 for τ ≤ τc (solid regime) and τ ¼ τc þ k_γn for
τ > τc (liquid regime). Using Eq. (2), the shear rate can be
expressed as

_γðrÞ ¼

8>>><
>>>:

−ðτck Þ1=n
�λiλo

r −rþλi−λo
λo−λi

�1=n
r1 ≤ r < λi

0 λi ≤ r ≤ λo

ðτck Þ1=n
�
r−λiλo

r þλi−λo
λo−λi

�1=n
λo < r ≤ r2:

ð5Þ

Using this expression of the shear rate, we perform a double
iteration analogous to Fordham et al. [26] to fulfill Eqs. (3)
and (4). We obtain the two yield positions λi and λo. The
obtained flow is shown in Fig. 3 and agrees quantitatively
with experimental measurements of the velocity profile. The
latter have been obtained by seeding a thin slit of the gel with
some bubbles and by following their displacement. Two
sheared zones close to the rod and the reservoir are clearly
evidenced. The displacement of the bubbles shows that there
is no horizontal flow at the surface. Only towards the end of
the rod, does a horizontal flow bringmatter from the sides to
fill up the extracted volume below the rod’s end [27]. This
flow occurs over a characteristic length of ∼2–3 cm (a
distance comparable to r2) and does not affect the previously
calculated velocity profile.
When one assumes that the fluid in the liquid region

between r1 and λi inside the bath is transferred onto the
coating with velocity V − vzðλiÞ, mass conservation yields
a layer of thickness (as derived in Sec. III of Supplemental
Material [19])

h ¼ −r1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
λi
r1
r2 _γðrÞdrR
λi
r1
_γðrÞdr

vuut : ð6Þ

In the meniscus region, the fluid turns progressively from a
liquid to a solid behavior.
The numerical values of the coating thickness h are

plotted as solid lines in Fig. 2 and are in excellent
agreement with the experimental results. The influence
of the geometrical dimensions as well as the velocity on the
coating thickness is well captured by the model. The
thickness of the coating layer is most variable when the
bath size is small and when the pull-out velocity is low as
predicted by the model. Importantly, the flow inside the
bath depends on three independent length scales [r1, r2,
and the rheological length Vðk=τcÞ1=n]. Hence, at least
two dimensionless parameters are required to describe
the flow [e.g., r2=r1 and Bingham number Bm ¼
ðτc=kÞðr2 − r1=VÞn]. As a consequence, no single master
curve for all rod sizes, bath sizes, and velocities can be
presented. The quantitative agreement between model and
experiment shows that the liquid moved upwards in the
bath is completely transferred onto the coating. Our results
indicate that both capillary effects and gravity play no role.
Let us discuss these hypotheses.
Capillary effects play a role when the stress gradient in

the deposit, ∼τc=h, is less than the characteristic capillary
pressure gradient in the meniscus close to the rod. In our
work, the capillary length lc ¼

ffiffiffiffiffiffiffiffiffiffi
σ=ρg

p
is smaller than or

comparable to the radii of the rods and the characteristic
capillary pressure gradient is σ=

ffiffiffiffiffiffiffi
hl3c

p
[9]. This means that

capillary forces can be neglected for τc > ðρgÞ3=4h1=2σ1=4,
which is well-fulfilled for the data in Fig. 2.
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FIG. 3. (a) Velocity profiles for rods of various radii r1 with-
drawn from a bath of r2 ¼ 21.5 mm with velocity 3 mms−1. The
data points are obtained by tracking the flow of small air bubbles
inserted perpendicular to the plane of observation. The solid lines
result from the velocity and mass-conservation conditions (with-
out fit parameter). The rheological properties of the Carbopol gel
are τc ¼ 14 Pa, k ¼ 8 Pa sn, and n ¼ 0.35. (b) Schematic of flow
during the dip-coating experiment. Radial profile of the steady
flow inside the bath of the velocity vz, shear rate _γ, and shear stress
τrz. The yielded regions are indicated light-shaded and the
unyielded regions are indicated dark-shaded.
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Drainage does not affect the coating thickness when the
width of the liquid zone around the rod is smaller than the
gravity-imposed drainage limit, i.e., λi < r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2τc=ρgr1

p
[28]. This criterion shows that drainage is negligible for the
data in Fig. 2.
We show in Fig. 4 the outcomes of experiments with

Carbopol solutions with yield stress of 3, 8, 18, and 28 Pa in
neat water, i.e., without PEG-12 dimethicone. The surface
tension of these aqueous Carbopol solutions is 63 mNm−1
[29]. Our model yields a good agreement with experiment
when the yield stress is higher than 18 Pa. In these
situations, capillary effects are small. Drainage can be
neglected as soon as the yield stress is higher than 8 Pa for
r1 ¼ 2.5 mm and higher than 18 Pa for r1 ¼ 5 and 10 mm.
For yield-stress values of 3 and 8 Pa, the coating thickness
is observed to vary little with bath size and our modeling
does not describe the measured values. Capillary effects
and drainage both play a role.
The good agreement contrasts the observation by

Maillard et al., who found a 40%–60% thinner deposit
than the total amount of fluid driven upwards [10,12]. Let
us first comment that an implementation of our modeling in
planar geometry predicts perfectly and quantitatively both
the velocity profiles and the size of the fluidized zone
measured in the work of Maillard et al. [12] (see Fig. S4 in
Ref. [19]). This underlines that our modeling whose

originally is to take into account the boundary conditions
and to write a zero-flux condition, captures quantitatively
the steady flow in the bath in the low-Reynolds limit. The
difference between our study and the work of Maillard et al.
comes from the role of drainage. As suggested by these
authors, gravity and drainage in the meniscus are at the
origin of the loss of matter.
Onemaywonder then,why do the results ofMaillard et al.

differ from ours and why does gravity not interfere in the
case of our rods? For a plate geometry, the thickness of the
liquid region along the plate λplatei is found to diverge as
λplatei ∝ L1=1þn, withL the bath size (see Sec. V in Ref. [19]).
When the thickness of the liquid zone exceeds a critical
value, drainagewill occur in themeniscus region. For a plate,
drainage likely occurs in the meniscus region, when the
thickness of the liquid region along the plate λplatei is larger
than the drainage limit τc=ρg. In the experiment of Maillard
et al. wide baths are employed and drainage occurred in the
meniscus region as λplatei exceeds τc=ρg, due to the scaling
of λplatei ∝ L1=1þn.
Conversely for a cylindrical geometry, the location of the

inner yield radius λi reaches a plateau value when the bath
size tends to infinity. The curvature of the rod results in a
faster dissipation of the stress field than in the case of a
plate in which the stress field is linear [cf. Eqs. (2) and
(S15) [19] ]. Pulling out a finite rod thus entrains a smaller
amount of liquid than pulling out a plate in a wide bath.
In the case of more complex geometries, a numerical
approach is likely required to obtain the stress field inside
the bath from the velocity boundary conditions and mass
conservation.
To conclude, let us come back to the steady character of

the flow. As pointed out by the measurement of the force
on the rod and by the constant coating thickness, our rods
are sufficiently long to establish a steady flow. An over-
estimate of the time needed to reach steady flow can be
made by assuming that steady state occurs when the critical
strain γc is reached at position λo, yielding the time
γcðr2 − λoÞ=Vd, where Vd is the downward velocity of
the fluid. Neglecting the wetting film on the external
wall which is much smaller than h, mass conservation
gives Vd ¼ −Vðr1 þ hÞ2=ðr22 − r21Þ. The critical strain γc
required to overcome the yield stress is smaller than
20% in the case of our gels [18]. It follows that the longest
transients in our experiments which occur for r1 ¼ 2.5 and
r2 ¼ 33 mm are less than the duration of the experiment.
In summary, we have studied the axisymmetric dip-

coating problem for a yield-stress fluid. As for Newtonian
fluids, we show that geometry plays a critical role. For
Newtonian fluids, the shapeof themeniscus differs for a plate
and for a rod. For yield-stress fluids, thegeometrydetermines
the stress field and the amount of fluid in its liquid state.
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FIG. 4. Transition from the meniscus-shaped regime to the
bath-flow regime for dip coating from aqueous Carbopol sol-
utions with increasing yield stress. The experimental data points
are compared with the weighted averages per rod size (dashed
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